cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242183 Integers c, listed with multiplicity, such that there is a solution to the equation a^2 + b^3 = c^4, with integers a, b > 0.

Original entry on oeis.org

6, 9, 15, 35, 36, 42, 48, 57, 63, 71, 72, 72, 75, 78, 90, 98, 100, 100, 120, 135, 141, 147, 147, 162, 195, 196, 204, 208, 215, 225, 225, 225, 243, 252, 260, 279, 280, 288, 289, 295, 300, 306, 336, 363, 364, 384, 405, 441, 450, 456, 456, 462, 504, 510, 525, 537
Offset: 1

Views

Author

Lars Blomberg, May 06 2014

Keywords

Comments

A242192(k) gives number of occurrences of k. - Reinhard Zumkeller, May 07 2014
See A300564 for the list of values without duplicates. - M. F. Hasler, Apr 16 2018

Examples

			6 is in the sequence because 6^4 = 28^2 + 8^3.
72 is in the sequence twice because 72^4 = 1728^2 + 288^3 = 4941^2 + 135^3.
		

Crossrefs

Programs

  • Haskell
    a242183 n = a242183_list !! (n-1)
    a242183_list = concatMap (\(r,x) -> take r [x,x..]) $
                             zip a242192_list [1..]
    -- Reinhard Zumkeller, May 07 2014
  • Mathematica
    f[n_] := f[n] = Module[{a}, Array[(a = Sqrt[n^4 - #^3]; If[ IntegerQ@ a && a > 0, {a, #}, Sequence @@ {}]) &, Floor[n^(4/3)]]];; k = 1; lst = {}; While[k < 3001, If[ f[k] != {}, AppendTo[lst, k]; Print[{k, f[k]}]]; k++]; s = Select[ Range[3000], f@# != {} &]; l = Length@ f@ # & /@ s; Flatten[ Table[ s[[#]], {l[[#]]}] & /@ Range@ Length@ s] (* Robert G. Wilson v, May 06 2014 *)

Formula

c = sqrt(sqrt(a^2+b^3)) is an integer.