A242186 Positive integers, c, such that there is more than one solution to the equation a^2 + b^3 = c^4, with a, b > 0.
72, 100, 147, 225, 456, 576, 800, 1050, 1176, 1539, 1800, 1944, 2028, 2645, 2646, 2695, 2700, 3025, 3087, 3275, 3648, 3844, 3969, 4335, 4356, 4500, 4608, 4950, 5412, 6000, 6075, 6400, 7260, 7623, 8225, 8400, 8405, 8450, 8664, 8820, 9000, 9408, 9828, 10108
Offset: 1
Keywords
Examples
72 is in the sequence since 72^4 = 1728^2 + 288^3 = 4941^2 + 135^3.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..202
Programs
-
Haskell
a242186 n = a242186_list !! (n-1) a242186_list = filter ((> 1) . a242192) [1..] -- Reinhard Zumkeller, May 07 2014
-
Mathematica
f[n_] := f[n] = Module[{a}, Array[(a = Sqrt[n^4 - #^3]; If[ IntegerQ@ a && a > 0, {a, #}, Sequence @@ {}]) &, Floor[n^(4/3)]]]; Select[ Range@ 10000, f@# > 1 &]
Comments