cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242183 Integers c, listed with multiplicity, such that there is a solution to the equation a^2 + b^3 = c^4, with integers a, b > 0.

Original entry on oeis.org

6, 9, 15, 35, 36, 42, 48, 57, 63, 71, 72, 72, 75, 78, 90, 98, 100, 100, 120, 135, 141, 147, 147, 162, 195, 196, 204, 208, 215, 225, 225, 225, 243, 252, 260, 279, 280, 288, 289, 295, 300, 306, 336, 363, 364, 384, 405, 441, 450, 456, 456, 462, 504, 510, 525, 537
Offset: 1

Views

Author

Lars Blomberg, May 06 2014

Keywords

Comments

A242192(k) gives number of occurrences of k. - Reinhard Zumkeller, May 07 2014
See A300564 for the list of values without duplicates. - M. F. Hasler, Apr 16 2018

Examples

			6 is in the sequence because 6^4 = 28^2 + 8^3.
72 is in the sequence twice because 72^4 = 1728^2 + 288^3 = 4941^2 + 135^3.
		

Crossrefs

Programs

  • Haskell
    a242183 n = a242183_list !! (n-1)
    a242183_list = concatMap (\(r,x) -> take r [x,x..]) $
                             zip a242192_list [1..]
    -- Reinhard Zumkeller, May 07 2014
  • Mathematica
    f[n_] := f[n] = Module[{a}, Array[(a = Sqrt[n^4 - #^3]; If[ IntegerQ@ a && a > 0, {a, #}, Sequence @@ {}]) &, Floor[n^(4/3)]]];; k = 1; lst = {}; While[k < 3001, If[ f[k] != {}, AppendTo[lst, k]; Print[{k, f[k]}]]; k++]; s = Select[ Range[3000], f@# != {} &]; l = Length@ f@ # & /@ s; Flatten[ Table[ s[[#]], {l[[#]]}] & /@ Range@ Length@ s] (* Robert G. Wilson v, May 06 2014 *)

Formula

c = sqrt(sqrt(a^2+b^3)) is an integer.

A300564 Numbers z such that there is a solution to x^2 + y^3 = z^4 with x, y, z >= 1.

Original entry on oeis.org

6, 9, 15, 35, 36, 42, 48, 57, 63, 71, 72, 75, 78, 90, 98, 100, 120, 135, 141, 147, 162, 195, 196, 204, 208, 215, 225, 243, 252, 260, 279, 280, 288, 289, 295, 300, 306, 336, 363, 364, 384, 405, 441, 450, 456, 462, 504, 510, 525, 537, 550, 568, 576, 600, 624, 630, 713, 720, 722, 735, 750, 784, 800, 819, 828, 841, 845, 847, 867, 875
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2018

Keywords

Crossrefs

Cf. A242183, A242192, A300565 (z^5 = x^3 + x^4), A300566 (z^6 = x^4 + y^5).

Programs

  • PARI
    is(z)=for(y=1,sqrtnint(z^4,3),issquare(z^4-y^3,&x)&&x&&return(1))

Formula

Equals sequence A242183 with duplicates removed.

A242186 Positive integers, c, such that there is more than one solution to the equation a^2 + b^3 = c^4, with a, b > 0.

Original entry on oeis.org

72, 100, 147, 225, 456, 576, 800, 1050, 1176, 1539, 1800, 1944, 2028, 2645, 2646, 2695, 2700, 3025, 3087, 3275, 3648, 3844, 3969, 4335, 4356, 4500, 4608, 4950, 5412, 6000, 6075, 6400, 7260, 7623, 8225, 8400, 8405, 8450, 8664, 8820, 9000, 9408, 9828, 10108
Offset: 1

Views

Author

Keywords

Comments

225, 1050, 1176, 2028, 3025, 6075, 7260, 8400, 8450, 8820, 9408, 10890, 12312, 18375, 19494, 21160, 24696, 26775, 28125, 28350, 31752, 31974, 34300, 39600, 43245, 44100, 49923, 53361, 54756, 58080, 64980, 67200, 71415, 75264, 87120, 98496, 131250, 139425, 144150, 145656, 159048, 164025, ... have three solutions;
1800, 11025, 14400, 16224, 38025, 48600, 61347, 67600, 70560, 81675, 88200, 115200, 129792, 147000, 155952, 166419, ... have four solutions;
24200, 77175, ... have five solutions.
A242192(a(n)) > 1. - Reinhard Zumkeller, May 07 2014

Examples

			72 is in the sequence since 72^4 = 1728^2 + 288^3 = 4941^2 + 135^3.
		

Crossrefs

Programs

  • Haskell
    a242186 n = a242186_list !! (n-1)
    a242186_list = filter ((> 1) . a242192) [1..]
    -- Reinhard Zumkeller, May 07 2014
  • Mathematica
    f[n_] := f[n] = Module[{a}, Array[(a = Sqrt[n^4 - #^3]; If[ IntegerQ@ a && a > 0, {a, #}, Sequence @@ {}]) &, Floor[n^(4/3)]]]; Select[ Range@ 10000, f@# > 1 &]
Showing 1-3 of 3 results.