cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242219 Smallest a(n) in Pythagorean triple (a, b, c) such that c(n) - b(n) = n.

Original entry on oeis.org

3, 4, 9, 8, 15, 12, 21, 12, 15, 20, 33, 24, 39, 28, 45, 24, 51, 24, 57, 40, 63, 44, 69, 36, 35, 52, 45, 56, 87, 60, 93, 40, 99, 68, 105, 48, 111, 76, 117, 60, 123, 84, 129, 88, 75, 92, 141, 72, 63, 60, 153, 104, 159, 72, 165, 84, 171, 116, 177, 120, 183, 124, 105, 80, 195, 132, 201, 136, 207, 140, 213, 84, 219, 148, 105, 152, 231, 156
Offset: 1

Views

Author

V.J. Pohjola, May 07 2014

Keywords

Comments

The local minima a(n) predominantly fluctuate, with an increasing amplitude, between the multiples of the leg lengths of the smallest primitive triple (3,4,5) and of its symmetric counterpart (4,3,5). When n grows, minima appear from higher primitive triples which further increase the amplitude.
We have a^2 = c^2 - b^2 = (c-b)(c+b) = n*(c+b). To find the least such square, use n=core(n)*f^2 with core = A007913, f = A000188(n), and look for the least c+b = c-b+2b = n+2b = core(n)*x^2 or x^2 = (n+2b)/core(n) = f^2 + 2b/core(n). The least such integer x is f+1 if core(n) is even, or else f+2. - M. F. Hasler, May 08 2014

Examples

			For n=7, a(7) = sqrt(2*7*h(12)-7^2) = 21;
for n=8, a(8) = sqrt(2*8*h(3)-8^2) = 12;
for n=9, a(9) = sqrt(2*9*h(5)-9^2) = 15;
for n=10, a(10) = sqrt(2*10*h(7)-10^2) = 20.
		

Programs

  • Mathematica
    (* first do *) hypos = A009003; (* then *)
    Table[ First[ Union[ Flatten[ Table[ Select[{Sqrt[2 hypos[[i]]*n - n^2]}, IntegerQ && hypos[[i]] > n], {i, 1, Length[hypos]}]]]], {n, 1, 200}]
    (* view table *) ListLinePlot[%]
  • PARI
    a(n)={ my( f=core(n,1)); sqrtint(( if( bittest( f[1],0), 4*f[2]+4, 2*f[2]+1)*f[1]+n )*n )} \\ M. F. Hasler, May 08 2014

Formula

a(n) = min(sqrt(2n*h(i)-n^2), where h(i)=A009003(i)>n.
a(n) = sqrt(( n + (x^2 - f^2)*core(n))*n ) where f = A000188(n), x = f+1 if core(n) = A007913(n) = n / f^2 is even, x = f+2 if core(n) is odd. - M. F. Hasler, May 08 2014