A242219 Smallest a(n) in Pythagorean triple (a, b, c) such that c(n) - b(n) = n.
3, 4, 9, 8, 15, 12, 21, 12, 15, 20, 33, 24, 39, 28, 45, 24, 51, 24, 57, 40, 63, 44, 69, 36, 35, 52, 45, 56, 87, 60, 93, 40, 99, 68, 105, 48, 111, 76, 117, 60, 123, 84, 129, 88, 75, 92, 141, 72, 63, 60, 153, 104, 159, 72, 165, 84, 171, 116, 177, 120, 183, 124, 105, 80, 195, 132, 201, 136, 207, 140, 213, 84, 219, 148, 105, 152, 231, 156
Offset: 1
Keywords
Examples
For n=7, a(7) = sqrt(2*7*h(12)-7^2) = 21; for n=8, a(8) = sqrt(2*8*h(3)-8^2) = 12; for n=9, a(9) = sqrt(2*9*h(5)-9^2) = 15; for n=10, a(10) = sqrt(2*10*h(7)-10^2) = 20.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
(* first do *) hypos = A009003; (* then *) Table[ First[ Union[ Flatten[ Table[ Select[{Sqrt[2 hypos[[i]]*n - n^2]}, IntegerQ && hypos[[i]] > n], {i, 1, Length[hypos]}]]]], {n, 1, 200}] (* view table *) ListLinePlot[%]
-
PARI
a(n)={ my( f=core(n,1)); sqrtint(( if( bittest( f[1],0), 4*f[2]+4, 2*f[2]+1)*f[1]+n )*n )} \\ M. F. Hasler, May 08 2014
Formula
a(n) = min(sqrt(2n*h(i)-n^2), where h(i)=A009003(i)>n.
a(n) = sqrt(( n + (x^2 - f^2)*core(n))*n ) where f = A000188(n), x = f+1 if core(n) = A007913(n) = n / f^2 is even, x = f+2 if core(n) is odd. - M. F. Hasler, May 08 2014
Comments