cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242238 Number of length n+7+1 0..7 arrays with every value 0..7 appearing at least once in every consecutive 7+2 elements, and new values 0..7 introduced in order.

Original entry on oeis.org

36, 92, 197, 400, 799, 1590, 3165, 6308, 12587, 25138, 50184, 100171, 199942, 399085, 796580, 1589995, 3173682, 6334777, 12644416, 25238648, 50377125, 100554308, 200709531, 400622482, 799654969, 1596136256, 3185937735, 6359231054
Offset: 1

Views

Author

R. H. Hardin, May 08 2014

Keywords

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....0....1....1....1....0....1....0....1....1
..2....2....2....2....2....2....2....1....1....2....2....1....2....1....2....2
..3....3....3....3....3....3....3....2....2....3....3....2....3....2....0....3
..4....4....4....1....4....1....4....3....3....4....0....3....0....3....3....4
..5....5....5....4....5....4....5....4....4....0....4....4....4....4....4....5
..0....6....0....5....6....5....6....5....5....5....5....5....5....5....5....6
..6....0....6....6....2....6....7....6....6....6....6....6....6....6....6....0
..7....7....7....7....7....7....0....7....7....7....7....7....7....7....7....7
..1....2....2....0....0....0....1....0....0....1....3....0....2....2....6....3
..2....1....1....2....1....3....1....1....2....2....1....2....1....0....1....1
..3....3....3....3....6....2....2....2....1....3....2....1....3....1....2....2
..4....2....5....3....3....2....3....2....2....5....5....6....1....6....0....4
		

Crossrefs

Column 7 of A242239.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) + a(n-8).
Empirical g.f.: x*(36 + 56*x + 69*x^2 + 75*x^3 + 74*x^4 + 66*x^5 + 51*x^6 + 29*x^7) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8). - Colin Barker, Nov 01 2018