cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242240 Expansion of Jacobi sn(x, 1/2) / cd(x, 1/2).

Original entry on oeis.org

0, 1, 0, 0, 0, 12, 0, 0, 0, 3024, 0, 0, 0, 4390848, 0, 0, 0, 21224560896, 0, 0, 0, 257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, 319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, 3564202847752289659513902717468672, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, May 09 2014

Keywords

Examples

			G.f. = x + 12*x^5 + 3024*x^9 + 4390848*x^13 + 21224560896*x^17 + ...
		

Crossrefs

Cf. A104203.

Programs

  • Mathematica
    a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ JacobiSN[x, 1/2] / JacobiCD[x, 1/2], {x, 0, n}]];
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( serreverse( intformal( (1 + x^4 + x * O(x^n))^(-1/2))), n))};

Formula

a(n) = |A104203(n)|.
E.g.f.: sn(x, 1/2) / cd(x, 1/2).
E.g.f. A(x) satisfies A(x)^2 = sinh(2 * Integral A(x) dx). - Michael Somos, Jun 17 2017