A242247 Maximal k <= n^2 + 1 such that every Goldbach representation of 2*k = p+q contains at least one prime from the set {prime(1), prime(2), ..., prime(n)}, or a(n)=0 if there is no such k.
2, 4, 8, 10, 14, 22, 22, 28, 32, 38, 46, 49, 49, 58, 58, 68, 74, 74, 82, 82, 87, 94, 94, 98, 112, 116, 121, 128, 136, 146, 146, 146, 155, 155, 164, 166, 184, 184, 184, 200, 206, 206, 221, 221, 224, 238, 244, 265, 265, 268, 268, 268, 286, 286, 286, 286, 344
Offset: 1
Keywords
Examples
Let n=3. Then the set is {2,3,5}. The Goldbach representations of 2*k=16 are 3+13 and 5+11. Each of them contains a prime from {2,3,5}. So a(3) >= 8. Since, by definition, a(3) <= 10, consider also 2*k=18 and 20. We have 18=7+11, 20=7+13. These representations contain none of the primes 2,3,5. Therefore a(3)=8.
Extensions
More terms from Peter J. C. Moses, May 10 2014
Comments