A242257 Number of binary words of length n that contain all sixteen 4-bit words as (possibly overlapping) contiguous subwords.
256, 1344, 5376, 19028, 61808, 188474, 547350, 1522758, 4083256, 10620590, 26912658, 66671138, 161950112, 386663750, 909204980, 2109158718, 4834062186, 10960141396, 24608994426, 54771900982, 120939714274, 265121486866, 577386711942, 1249925021562, 2691031388142
Offset: 19
Keywords
Examples
a(19) = 256: 0000100110101111000, 0000100111101011000, 0000101001101111000, ..., 1111010110010000111, 1111011000010100111, 1111011001010000111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 19..2000
- Eric Weisstein's World of Mathematics, Coin Tossing
- Wikipedia, Deterministic finite automaton
Programs
-
Maple
b:= proc(n, l) option remember; local m; m:= min(l[]); `if`(m=5, 2^n, `if`(5-m>n, 0, b(n-1, [ [2, 3, 4, 5, 5][l[1]], [1, 1, 1, 1, 5][l[2]], [2, 3, 4, 4, 5][l[3]], [1, 1, 1, 5, 5][l[4]], [2, 3, 3, 5, 5][l[5]], [1, 1, 4, 1, 5][l[6]], [2, 2, 4, 5, 5][l[7]], [1, 3, 1, 3, 5][l[8]], [1, 3, 4, 5, 5][l[9]], [2, 2, 2, 2, 5][l[10]], [2, 3, 3, 2, 5][l[11]], [1, 1, 4, 5, 5][l[12]], [2, 2, 2, 5, 5][l[13]], [1, 3, 4, 1, 5][l[14]], [2, 2, 4, 2, 5][l[15]], [1, 3, 1, 5, 5][l[16]]])+ b(n-1, [ [1, 1, 1, 1, 5][l[1]], [2, 3, 4, 5, 5][l[2]], [1, 1, 1, 5, 5][l[3]], [2, 3, 4, 4, 5][l[4]], [1, 1, 4, 1, 5][l[5]], [2, 3, 3, 5, 5][l[6]], [1, 3, 1, 3, 5][l[7]], [2, 2, 4, 5, 5][l[8]], [2, 2, 2, 2, 5][l[9]], [1, 3, 4, 5, 5][l[10]], [1, 1, 4, 5, 5][l[11]], [2, 3, 3, 2, 5][l[12]], [1, 3, 4, 1, 5][l[13]], [2, 2, 2, 5, 5][l[14]], [1, 3, 1, 5, 5][l[15]], [2, 2, 4, 2, 5][l[16]]]))) end: a:= n-> b(n, [1$16]): seq(a(n), n=19..40);
Comments