cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242279 Number of inequivalent (mod D_4) ways four checkers can be placed on an n X n board.

Original entry on oeis.org

1, 23, 252, 1666, 7509, 26865, 79920, 209096, 491425, 1064575, 2150076, 4104738, 7458437, 13005041, 21857984, 35598880, 56353185, 87019191, 131364700, 194364050, 282314901, 403316353, 567402672, 787201416, 1078078209, 1459020095, 1952782300, 2587048786, 3394568325
Offset: 2

Views

Author

Heinrich Ludwig, May 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5), {x, 0, 20}], x] (* Vaclav Kotesovec, May 10 2014 *)
    LinearRecurrence[{4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1},{0,0,1,23,252,1666,7509,26865,79920,209096,491425,1064575,2150076,4104738},40] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = (n^8 - 6*n^6 + 40*n^4 - 48*n^3 + 16*n^2 + IF(MOD(n, 2) = 1)*(14*n^4 - 48*n^3 + 34*n^2 - 3))/192.
G.f.: x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5). - Vaclav Kotesovec, May 10 2014
a(n) = A054772(n, 4), n >= 2. - Wolfdieter Lang, Oct 03 2016