A242300
a(n) = Sum_{0<=iA000032(k) is the k-th Lucas number.
0, 2, 11, 35, 105, 292, 796, 2130, 5655, 14927, 39281, 103160, 270600, 709282, 1858291, 4867275, 12746265, 33375932, 87388676, 228801650, 599034975, 1568333527, 4106014561, 10749789360, 28143481680, 73680863042, 192899442971, 505018008755, 1322155461705
Offset: 0
Examples
For L(12) = a(13) the sum is (L(13)-1)^2 + L(11) + 1 = 520^2 + 200 = 270600 and for L(13) = a(14) the sum is (L(14)-1)^2 + l(12) - 4 = 842^2 + 322 - 4 = 709282.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-6,4,2,-1).
Programs
-
PARI
concat(0, Vec(-x*(x^3+5*x^2-3*x-2)/((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, May 13 2014
-
Sage
[(lucas_number2(i+1,1,-1)-1)^2+lucas_number2(i-1,1,-1)+(5*(-1)^i-3)/2 for i in [0..50]] # Tom Edgar, May 13 2014
Formula
The sums are (1) for L(2*k): (L(2*k+1)-1)^2 + L(2*k-1) + 1 and (2) for L(2*k+1): (L(2*k+2)-1)^2 + L(2*k) - 4.
G.f.: -x*(x^3+5*x^2-3*x-2) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, May 12 2014
a(n) = (L(n+1)-1)^2 + L(n-1) + (5*(-1)^n-3)/2. - Colin Barker, May 13 2014
Extensions
Typo in a(18) fixed by Colin Barker, May 12 2014
More terms from Colin Barker, May 12 2014
Comments