A242322 T(n,k)=Number of length n+k+2 0..k arrays with every value 0..k appearing at least once in every consecutive k+3 elements, and new values 0..k introduced in order.
7, 25, 13, 65, 61, 24, 140, 185, 145, 44, 266, 440, 503, 337, 81, 462, 896, 1300, 1316, 781, 149, 750, 1638, 2801, 3648, 3398, 1829, 274, 1155, 2766, 5334, 8231, 10012, 8801, 4269, 504, 1705, 4395, 9290, 16194, 23486, 27368, 23069, 9957, 927, 2431, 6655
Offset: 1
Examples
Some solutions for n=5 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....1....1....1....1....1....1....1....0....1....0....1....1 ..0....2....1....1....2....2....1....2....2....2....1....0....2....1....0....1 ..2....1....2....2....3....2....0....1....3....3....2....1....3....2....2....2 ..3....3....3....3....0....3....2....3....1....4....3....2....4....0....0....0 ..4....0....0....0....2....2....3....4....0....2....2....3....3....3....3....3 ..1....4....4....4....4....4....4....0....4....0....4....4....2....4....4....4 ..2....1....2....4....1....0....1....2....3....3....0....1....0....1....4....4 ..0....1....0....1....1....1....1....3....3....1....1....2....1....1....1....1 ..3....2....1....2....3....4....0....1....2....1....4....0....3....3....2....2 ..1....0....4....0....2....4....0....1....2....2....4....4....2....2....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..369
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) +2*a(n-4) -a(n-5) -a(n-6)
k=3: [order 10]
k=4: [order 15]
k=5: [order 21]
k=6: [order 28]
Empirical for row n:
n=1: a(n) = (1/8)*n^4 + (11/12)*n^3 + (19/8)*n^2 + (31/12)*n + 1
n=2: a(n) = (5/8)*n^4 + (35/12)*n^3 + (39/8)*n^2 + (43/12)*n + 1
n=3: a(n) = (21/8)*n^4 + (89/12)*n^3 + (67/8)*n^2 + (55/12)*n + 1
n=4: a(n) = (77/8)*n^4 + (179/12)*n^3 + (103/8)*n^2 + (67/12)*n + 1
n=5: a(n) = (261/8)*n^4 + (245/12)*n^3 + (163/8)*n^2 + (79/12)*n + 1
n=6: a(n) = (845/8)*n^4 - (73/12)*n^3 + (343/8)*n^2 + (91/12)*n + 1 for n>1
n=7: a(n) = (2661/8)*n^4 - (2263/12)*n^3 + (1059/8)*n^2 + (103/12)*n + 1 for n>2
n=8: a(n) = (8237/8)*n^4 - (11701/12)*n^3 + (3879/8)*n^2 + (115/12)*n + 1 for n>3
n=9: a(n) = (25221/8)*n^4 - (46531/12)*n^3 + (14275/8)*n^2 + (127/12)*n + 1 for n>4
n=10: a(n) = (76685/8)*n^4 - (165601/12)*n^3 + (50455/8)*n^2 + (139/12)*n + 1 for n>5
n=11: a(n) = (232101/8)*n^4 - (555055/12)*n^3 + (171139/8)*n^2 + (151/12)*n + 1 for n>6
n=12: a(n) = (700397/8)*n^4 - (1794061/12)*n^3 + (561703/8)*n^2 + (163/12)*n + 1 for n>7
n=13: a(n) = (2109381/8)*n^4 - (5664667/12)*n^3 + (1798755/8)*n^2 + (175/12)*n + 1 for n>8
n=14: a(n) = (6344525/8)*n^4 - (17608249/12)*n^3 + (5657175/8)*n^2 + (187/12)*n + 1 for n>9
n=15: a(n) = (19066341/8)*n^4 - (54151687/12)*n^3 + (17559907/8)*n^2 + (199/12)*n + 1 for n>10
Comments