cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242322 T(n,k)=Number of length n+k+2 0..k arrays with every value 0..k appearing at least once in every consecutive k+3 elements, and new values 0..k introduced in order.

Original entry on oeis.org

7, 25, 13, 65, 61, 24, 140, 185, 145, 44, 266, 440, 503, 337, 81, 462, 896, 1300, 1316, 781, 149, 750, 1638, 2801, 3648, 3398, 1829, 274, 1155, 2766, 5334, 8231, 10012, 8801, 4269, 504, 1705, 4395, 9290, 16194, 23486, 27368, 23069, 9957, 927, 2431, 6655
Offset: 1

Views

Author

R. H. Hardin, May 10 2014

Keywords

Comments

Table starts
....7....25.....65.....140.....266.....462......750.....1155.....1705.....2431
...13....61....185.....440.....896....1638.....2766.....4395.....6655.....9691
...24...145....503....1300....2801....5334.....9290....15123....23350....34551
...44...337...1316....3648....8231...16194....28897....47931....75118...112511
...81...781...3398...10012...23486...47466....86381...145443...230647...348771
..149..1829...8801...27368...66366..137166...253674...432331...692113..1054531
..274..4269..23069...75236..187671..395166...740496..1274419..2055676..3150991
..504..9957..60197..208976..533801.1141290..2161503..3749211..6083896..9369751
..927.23233.156887..577964.1530356.3312546..6326951.11042115.18002245.27827211
.1705.54225.408962.1596216.4371836.9669270.18590776.32600811.53341987.82686971

Examples

			Some solutions for n=5 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....1....1....1....1....1....1....0....1....0....1....1
..0....2....1....1....2....2....1....2....2....2....1....0....2....1....0....1
..2....1....2....2....3....2....0....1....3....3....2....1....3....2....2....2
..3....3....3....3....0....3....2....3....1....4....3....2....4....0....0....0
..4....0....0....0....2....2....3....4....0....2....2....3....3....3....3....3
..1....4....4....4....4....4....4....0....4....0....4....4....2....4....4....4
..2....1....2....4....1....0....1....2....3....3....0....1....0....1....4....4
..0....1....0....1....1....1....1....3....3....1....1....2....1....1....1....1
..3....2....1....2....3....4....0....1....2....1....4....0....3....3....2....2
..1....0....4....0....2....4....0....1....2....2....4....4....2....2....0....4
		

Crossrefs

Column 1 is A000073(n+5)
Row 1 is A001296(n+1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) +2*a(n-4) -a(n-5) -a(n-6)
k=3: [order 10]
k=4: [order 15]
k=5: [order 21]
k=6: [order 28]
Empirical for row n:
n=1: a(n) = (1/8)*n^4 + (11/12)*n^3 + (19/8)*n^2 + (31/12)*n + 1
n=2: a(n) = (5/8)*n^4 + (35/12)*n^3 + (39/8)*n^2 + (43/12)*n + 1
n=3: a(n) = (21/8)*n^4 + (89/12)*n^3 + (67/8)*n^2 + (55/12)*n + 1
n=4: a(n) = (77/8)*n^4 + (179/12)*n^3 + (103/8)*n^2 + (67/12)*n + 1
n=5: a(n) = (261/8)*n^4 + (245/12)*n^3 + (163/8)*n^2 + (79/12)*n + 1
n=6: a(n) = (845/8)*n^4 - (73/12)*n^3 + (343/8)*n^2 + (91/12)*n + 1 for n>1
n=7: a(n) = (2661/8)*n^4 - (2263/12)*n^3 + (1059/8)*n^2 + (103/12)*n + 1 for n>2
n=8: a(n) = (8237/8)*n^4 - (11701/12)*n^3 + (3879/8)*n^2 + (115/12)*n + 1 for n>3
n=9: a(n) = (25221/8)*n^4 - (46531/12)*n^3 + (14275/8)*n^2 + (127/12)*n + 1 for n>4
n=10: a(n) = (76685/8)*n^4 - (165601/12)*n^3 + (50455/8)*n^2 + (139/12)*n + 1 for n>5
n=11: a(n) = (232101/8)*n^4 - (555055/12)*n^3 + (171139/8)*n^2 + (151/12)*n + 1 for n>6
n=12: a(n) = (700397/8)*n^4 - (1794061/12)*n^3 + (561703/8)*n^2 + (163/12)*n + 1 for n>7
n=13: a(n) = (2109381/8)*n^4 - (5664667/12)*n^3 + (1798755/8)*n^2 + (175/12)*n + 1 for n>8
n=14: a(n) = (6344525/8)*n^4 - (17608249/12)*n^3 + (5657175/8)*n^2 + (187/12)*n + 1 for n>9
n=15: a(n) = (19066341/8)*n^4 - (54151687/12)*n^3 + (17559907/8)*n^2 + (199/12)*n + 1 for n>10