A242391 Number of compositions of n in which each part has odd multiplicity.
1, 1, 1, 4, 3, 10, 16, 28, 49, 91, 186, 266, 670, 884, 2350, 3028, 8259, 10536, 30241, 37382, 108628, 135550, 391202, 503750, 1429838, 1884659, 5222976, 7107138, 19119324, 27088726, 70366026, 103884570, 259884905, 399686188, 962312254, 1543116240, 3576132805
Offset: 0
Keywords
Examples
a(0) = 1: the empty composition. a(1) = 1: [1]. a(2) = 1: [2]. a(3) = 4: [3], [2,1], [1,2], [1,1,1]. a(4) = 3: [4], [3,1], [1,3]. a(5) = 10: [5], [4,1], [1,4], [3,2], [2,3], [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A130495 (for even multiplicity).
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(`if`(j=0 or irem(j, 2)=1, b(n-i*j, i-1, p+j)/j!, 0), j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..45);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Sum[If[j==0 || Mod[j, 2]==1, b[n-i*j, i-1, p+j]/j!, 0], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)