A258165 Odd non-Brazilian numbers > 1.
3, 5, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311, 313, 317, 331, 337
Offset: 1
Keywords
Examples
11 is present because there is no base b < 11 - 1 = 10 such that the representation of 11 in base b is a repdigit (all digits are equal). In fact, we have: 11 = 1011_2 = 102_3 = 23_4 = 21_5 = 15_6 = 14_7 = 13_8 = 12_9, and none of these representations are repdigits. - _Bernard Schott_, Jun 21 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1150
Crossrefs
Programs
-
Mathematica
fQ[n_] := Block[{b = 2}, While[b < n - 1 && Length@ Union@ IntegerDigits[n, b] > 1, b++]; b+1 == n]; Select[1 + 2 Range@ 170, fQ]
-
PARI
forstep(n=3, 300, 2, c=1; for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), c=0; break));if(c,print1(n,", "))) \\ Derek Orr, May 27 2015
-
Python
from sympy.ntheory.factor_ import digits l=[] for n in range(3, 301, 2): c=1 for b in range(2, n - 1): d=digits(n, b)[1:] if max(d)==min(d): c=0 break if c: l.append(n) print(l) # Indranil Ghosh, Jun 22 2017, after PARI program
Comments