A242420 Self-inverse permutation of positive integers: a(n) = (A006530(n)^(A071178(n)-1)) * A243057(n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12, 13, 35, 10, 16, 17, 18, 19, 45, 21, 77, 23, 24, 25, 143, 27, 175, 29, 30, 31, 32, 55, 221, 14, 36, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 49, 75, 187, 1573, 53, 54, 33, 875, 247, 667, 59, 90, 61, 899, 63, 64, 65
Offset: 1
Keywords
Examples
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation: _ | | | | | |_ _ | | | |_ _ |_ _ _ _ _| First we apply A242419, which reverses the order of "steps", so that each horizontal and vertical line segment centered around a "convex corner" moves as a whole, so that the first stair from the top (one unit wide and three units high) is moved to the last position, the second one (two units wide and two units high) stays in the middle, and the original bottom step (two units wide and one unit high) will be the new topmost step, thus we get the following Young diagram: _ _ | |_ _ | | | |_ | | | | |_ _ _ _ _| which represents the partition (2,4,4,5,5,5), encoded in A112798 by p_2 * p_4^2 * p_5^3 = 3 * 7^2 * 11^3 = 195657. Then we apply A225891, which rotates the exponents of distinct primes in the factorization of n one left, in this context the vertical line segments one step up, with the top-one going to the bottomost, and so we get: _ _ | | | |_ _ | | | | | |_ |_ _ _ _ _| which represents the partition (2,2,4,4,4,5), encoded in A112798 by p_2^2 * p_4^3 * p_5 = 3^2 * 7^3 * 11 = 33957, thus a(2200) = 33957.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8192
- Wikipedia, Young diagram
- Index entries for sequences that are permutations of the natural numbers
Comments