A242428 Length of longest chain of nonempty proper subsemigroups of the dual symmetric inverse monoid.
0, 2, 17, 180, 3298, 88431, 3064050, 130905678, 6732227475, 409094032964, 28917250469178, 2346562701385648, 216180120430479731, 22397392442055209003, 2588479398843886168171, 331352273262513644199134, 46692196905193286953380160, 7203294536351261350956567853, 1210694223244114528129261255186
Offset: 1
Keywords
Links
- James Mitchell, Table of n, a(n) for n = 1..100
- P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015.
Programs
-
Mathematica
a[n_] := Sum[StirlingS2[n, i] (i! (StirlingS2[n, i] - 1)/2 - DigitCount[i, 2, 1] + Ceiling[3 i/2] + 1), {i, 1, n}] - n - 1; Array[a, 19] (* Jean-François Alcover, Dec 12 2018, from PARI *)
-
PARI
b(n)=if(n<1, 0, b(n\2)+n%2) /* A000120 */ a(n)=-n-1+sum(i=1, n, stirling(n,i,flag=2)*(ceil(3*i/2)-b(i)+1+(stirling(n,i,flag=2)-1)*i!/2))