cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242434 Number of compositions of n in which each part p has multiplicity p.

Original entry on oeis.org

1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 10, 60, 0, 1, 5, 0, 0, 15, 105, 0, 0, 0, 36, 286, 0, 0, 1281, 12768, 0, 0, 0, 56, 504, 1, 7, 2520, 27720, 28, 378, 1260, 0, 0, 7014, 84000, 0, 0, 4621, 83168, 360360, 210, 2346, 2522880, 37837800, 13860, 180180, 120, 1320
Offset: 0

Views

Author

Alois P. Heinz, May 14 2014

Keywords

Comments

a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}.

Examples

			a(0) = 1: the empty composition.
a(1) = 1: [1].
a(4) = 1: [2,2].
a(5) = 3: [1,2,2], [2,1,2], [2,2,1].
a(9) = 1: [3,3,3].
a(10) = 4: [1,3,3,3], [3,1,3,3], [3,3,1,3], [3,3,3,1].
a(13) = 10: [2,2,3,3,3], [2,3,2,3,3], [2,3,3,2,3], [2,3,3,3,2], [3,2,2,3,3], [3,2,3,2,3], [3,2,3,3,2], [3,3,2,2,3], [3,3,2,3,2], [3,3,3,2,2].
		

Crossrefs

Cf. A033461 (the same for partitions), A336269.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
           b(n, i-1, p) +`if`(i^2>n, 0, b(n-i^2, i-1, p+i)/i!)))
        end:
    a:= n-> b(n, isqrt(n), 0):
    seq(a(n), n=0..100);
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-1, p] + If[i^2 >n, 0, b[n-i^2, i-1, p+i]/i!]]]; a[n_] := b[n, Floor[Sqrt[n]], 0]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)