A242434 Number of compositions of n in which each part p has multiplicity p.
1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 10, 60, 0, 1, 5, 0, 0, 15, 105, 0, 0, 0, 36, 286, 0, 0, 1281, 12768, 0, 0, 0, 56, 504, 1, 7, 2520, 27720, 28, 378, 1260, 0, 0, 7014, 84000, 0, 0, 4621, 83168, 360360, 210, 2346, 2522880, 37837800, 13860, 180180, 120, 1320
Offset: 0
Examples
a(0) = 1: the empty composition. a(1) = 1: [1]. a(4) = 1: [2,2]. a(5) = 3: [1,2,2], [2,1,2], [2,2,1]. a(9) = 1: [3,3,3]. a(10) = 4: [1,3,3,3], [3,1,3,3], [3,3,1,3], [3,3,3,1]. a(13) = 10: [2,2,3,3,3], [2,3,2,3,3], [2,3,3,2,3], [2,3,3,3,2], [3,2,2,3,3], [3,2,3,2,3], [3,2,3,3,2], [3,3,2,2,3], [3,3,2,3,2], [3,3,3,2,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4500
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, b(n, i-1, p) +`if`(i^2>n, 0, b(n-i^2, i-1, p+i)/i!))) end: a:= n-> b(n, isqrt(n), 0): seq(a(n), n=0..100);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-1, p] + If[i^2 >n, 0, b[n-i^2, i-1, p+i]/i!]]]; a[n_] := b[n, Floor[Sqrt[n]], 0]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
Comments