A242440 Decimal expansion of a constant related to a certain Sobolev isoperimetric inequality.
3, 1, 8, 7, 5, 9, 0, 6, 0, 9, 8, 0, 3, 8, 6, 6, 2, 4, 8, 1, 1, 9, 7, 2, 1, 7, 2, 4, 7, 6, 2, 1, 2, 5, 4, 3, 2, 2, 5, 3, 5, 0, 7, 7, 4, 6, 9, 9, 6, 8, 2, 2, 8, 2, 9, 0, 2, 1, 4, 1, 8, 1, 5, 8, 1, 8, 8, 7, 8, 8, 4, 7, 0, 3, 8, 3, 9, 9, 7, 6, 8, 0, 8, 1, 6, 0, 2, 0, 4, 6, 3, 9, 3, 3, 8, 8, 2, 9, 1, 3
Offset: 0
Examples
0.31875906098038662481197217247621254322535...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 222.
Programs
-
Maple
Re(evalf(sqrt((EllipticF(I/sqrt(3), sqrt(3/2))*I + EllipticK(I/sqrt(2))) / (2*Pi*sqrt(2))), 120)); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
Sqrt[(EllipticF[Log[3]/2*I, 3/2]*I + EllipticK[-1/2])/(2*Pi*Sqrt[2])] // Re // RealDigits[#, 10, 100]& // First RealDigits[Sqrt[(EllipticK[1/3] - EllipticF[ArcCot[Sqrt[2]], 1/3])/(2 Sqrt[3] Pi)], 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
Formula
Equals sqrt( 1/(2*Pi) * Integral_{t >= 1} 1/(sqrt(t^2 + 2)*sqrt(t^2 + 3)) dt ).
sqrt((F(log(3)/2*i, 3/2)*i + K(-1/2))/(2*Pi*sqrt(2))), with i = sqrt(-1), F and K being the elliptic integrals.
Comments