A242447 Number T(n,k) of compositions of n in which the maximal multiplicity of parts equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 3, 4, 0, 1, 0, 5, 6, 4, 0, 1, 0, 11, 10, 5, 5, 0, 1, 0, 13, 21, 18, 5, 6, 0, 1, 0, 19, 40, 34, 21, 6, 7, 0, 1, 0, 27, 87, 59, 40, 27, 7, 8, 0, 1, 0, 57, 121, 132, 100, 49, 35, 8, 9, 0, 1, 0, 65, 219, 272, 210, 131, 63, 44, 9, 10, 0, 1
Offset: 0
Examples
T(6,1) = 11: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1], [2,4], [4,2], [1,5], [5,1], [6]. T(6,2) = 10: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3], [1,1,4], [1,4,1], [4,1,1]. T(6,3) = 5: [2,2,2], [1,1,1,3], [1,1,3,1], [1,3,1,1], [3,1,1,1]. T(6,4) = 5: [1,1,1,1,2], [1,1,1,2,1], [1,1,2,1,1], [1,2,1,1,1], [2,1,1,1,1]. T(6,6) = 1: [1,1,1,1,1,1]. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 3, 0, 1; 0, 3, 4, 0, 1; 0, 5, 6, 4, 0, 1; 0, 11, 10, 5, 5, 0, 1; 0, 13, 21, 18, 5, 6, 0, 1; 0, 19, 40, 34, 21, 6, 7, 0, 1; 0, 27, 87, 59, 40, 27, 7, 8, 0, 1; 0, 57, 121, 132, 100, 49, 35, 8, 9, 0, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k)))) end: T:= (n, k)-> b(n$2, 0, k) -`if`(k=0, 0, b(n$2, 0, k-1)): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i<1, 0, Sum[b[n - i*j, i-1, p + j, k]/j!, {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[n, n, 0, k] - If[k == 0, 0, b[n, n, 0, k-1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Alois P. Heinz *)
Comments