cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242478 Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime < p.

Original entry on oeis.org

5, 57839, 58013, 105683, 160367, 926899, 926983, 927007, 928819, 963121, 963223, 2329777, 2384821, 2384881, 3228713, 3228751, 3229081, 3229097, 3246653, 3259547, 7327781, 7339447
Offset: 1

Views

Author

Anthony Sand, May 16 2014

Keywords

Examples

			5 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)). 57839 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)) + ...  digit-mult(digit-sum(BD1C)) = digit-mult(2) + digit-mult(3) + ... digit-mult(23) = 2 + 3 + ... 2*3. Note that BD1C and 23 in base 17 = 57829 and 37 in base 10.
		

Crossrefs

Cf. A240886.

Formula

The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, in base 17, digit-mult(digit-sum(9999)) = digit-mult(22) = 2 * 2 = 4 (22 in base 17 = 36 in base 10).