cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242480 a(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n.

Original entry on oeis.org

0, 2, 3, 8, 5, 6, 7, 16, 9, 20, 11, 12, 13, 28, 15, 32, 17, 18, 19, 20, 21, 44, 23, 24, 25, 52, 27, 28, 29, 30, 31, 64, 33, 68, 35, 72, 37, 76, 39, 40, 41, 42, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 54, 55, 56, 57, 116, 59, 120, 61, 124, 63, 128, 65, 66
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

a(n) / n = 1 for numbers n from A242482, a(n) / n = 2 for numbers n from A242483.
If there are any odd multiply-perfect numbers n > 1 then a(n) = 0.
Possible values of a(n) in increasing order = A242485. Numbers m such that a(n) = m has no solution = A242486.

Examples

			a(8) = (8*(8+1)/2) mod 8 + sigma(8) mod 8 + antisigma(8) mod 8 = 36 mod 8 + 15 mod 8 + 21 mod 8 = 4 + 7 + 5 = 16.
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n)): n in [1..1000]]

Formula

a(n) = A142150(n) + A054024(n) + A229110(n) = (A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n).
a(n) = A242481(n) * n.