cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242482 Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

Numbers n such that A242480(n) = (1/2*n*(n+1)) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 1.
Conjecture: with number 1 complement of A242483.
Supersequence of primes (A000040).
If there is no odd multiply-perfect number, then:
(1) a(n) = union of odd numbers >= 3 and even numbers from A239719.
(2) a(n) = supersequence of odd numbers (A005408).

Examples

			6 is in sequence because [(6*(6+1)/2) mod 6 + sigma(6) mod 6 + antisigma(6) mod 6] / 6 = (21 mod 6 + 12 mod 6 + 9 mod 6) / 6 = (3 + 0 + 3 ) / 6 = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | n eq ((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))]