cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242483 Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 2.

Original entry on oeis.org

4, 8, 10, 14, 16, 22, 26, 32, 34, 36, 38, 44, 46, 48, 50, 52, 58, 60, 62, 64, 68, 72, 74, 76, 82, 84, 86, 90, 92, 94, 96, 98, 106, 108, 110, 116, 118, 122, 124, 128, 130, 132, 134, 136, 142, 144, 146, 148, 152, 154, 156, 158, 164, 166, 168, 170, 172, 178, 182
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

Numbers n such that A242480(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = 2n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 2.
Conjecture: with number 1 complement of A242482.

Examples

			8 is in sequence because [(8*(8+1)/2) mod 8 + sigma(8) mod 8 + antisigma(8) mod 8] / 8 = (36 mod 8 + 15 mod 8 + 21 mod 8) / 8 = (4 + 7 + 5 ) / 8 = 2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | 2 eq (((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n)))div n]