cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242496 a(n)=sum_{j=0..n} sum_{i=0..j} F(i)*L(j), where F(n)=A000045(n) and L(n)=A000032(n).

Original entry on oeis.org

0, 1, 7, 23, 72, 204, 564, 1521, 4059, 10747, 28336, 74504, 195576, 512865, 1344063, 3521007, 9221688, 24148468, 63230860, 165555665, 433454835, 1134839091, 2971111392, 7778574288, 20364739632, 53315851969, 139583151799, 365434146311, 956720165544
Offset: 0

Views

Author

J. M. Bergot, May 16 2014

Keywords

Examples

			For n=5, 0*(2+1+3+4+7+11) + 1*(1+3+4+7+11) + 1*(3+4+7+11) + 2*(4+7+11) + 3*(7+11) + 5*11 = 204 = F(2*5+3) - L(n+2) + 0 = 233-29 = 204.
		

Crossrefs

Programs

  • Maple
    A242496 := proc(n)
        add(add(A000045(i)*A000032(j),i=0..j),j=0..n) ;
    end proc: # R. J. Mathar, May 17 2014
  • Mathematica
    LinearRecurrence[{4,-2,-6,4,2,-1},{0,1,7,23,72,204},30] (* Harvey P. Dale, Oct 03 2020 *)
  • PARI
    F(n) = fibonacci(n)
    L(n) = if(n==0, 2, F(2*n)/F(n))
    vector(30, n, sum(i=0, n-1, sum(j=i, n-1, F(i)*L(j)))) \\ Colin Barker, May 16 2014

Formula

a(n) = A001519(n+2) - A000032(n+2) + A059841(n).
a(n) = L(n)*F(n+3) - L(n+2) + (1-3*(-1)^n)/2. - Colin Barker, May 18 2014
G.f.: -x*(3*x^2-3*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, May 16 2014

Extensions

Two terms corrected, and more terms added by Colin Barker, May 16 2014
Formula corrected by Colin Barker, May 17 2014