A242499 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 1.
1, 0, 1, 3, 1, 9, 11, 18, 51, 65, 151, 290, 477, 1043, 1835, 3486, 6931, 12540, 24607, 46797, 87979, 171072, 323269, 619245, 1190619, 2264925, 4357211, 8343322, 15973309, 30711853, 58846191, 113027716, 217192103, 416964202, 801880039, 1541412015, 2963997227
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Column k=1 of A242498.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<6, [0, 1, 0, 1, 3, 1][n+1], ((3*n-2)*a(n-2) +(4*n+2)*a(n-3) -(3*n-10)*a(n-4) -(4*n-22)*a(n-5) +(n-6)*a(n-6))/(n+2)) end: seq(a(n), n=1..50);
-
Mathematica
a[n_] := a[n] = If[n<6, {0, 1, 0, 1, 3, 1}[[n+1]], ((3n-2)a[n-2] + (4n+2)a[n-3] - (3n-10)a[n-4] - (4n-22)a[n-5] + (n-6)a[n-6])/(n+2)]; Array[a, 50] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
Formula
Recurrence (for n>=5): (n+2)*(16*n^4 - 128*n^3 + 344*n^2 - 352*n + 89)*a(n) = -32*(n+1)*(2*n-5)*a(n-1) + 2*(16*n^5 - 112*n^4 + 264*n^3 - 320*n^2 + 301*n - 89)*a(n-2) + 2*(2*n-5)*(16*n^4 - 80*n^3 + 80*n^2 + 36*n - 53)*a(n-3) - (n-4)*(16*n^4 - 64*n^3 + 56*n^2 + 16*n - 31)*a(n-4). - Vaclav Kotesovec, May 20 2014
Comments