cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242517 List of primes p for which p^n - 2 is prime for n = 1, 3, and 5.

Original entry on oeis.org

31, 619, 2791, 4801, 15331, 33829, 40129, 63421, 69151, 98731, 127291, 142789, 143569, 149971, 151849, 176599, 184969, 201829, 210601, 225289, 231841, 243589, 250951, 271279, 273271, 277549, 280591, 392269, 405439, 441799, 472711, 510709, 530599, 568441, 578689
Offset: 1

Views

Author

Abhiram R Devesh, May 17 2014

Keywords

Examples

			31 is in the sequence because
p = 31 (prime),
p - 2 = 29 (prime),
p^3 - 2 = 29789 (prime), and
p^5 - 2 = 28629149 (prime).
		

Crossrefs

Intersection of A006512, A178251 and A154834, hence, intersection of A240126 and A154834.
Cf. A001359.

Programs

  • Mathematica
    Select[Range[600000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 2, PrimeQ] &] (* Amiram Eldar, Apr 06 2020 *)
  • PARI
    isok(p) = isprime(p) && isprime(p-2) && isprime(p^3-2) && isprime(p^5-2); \\ Michel Marcus, Apr 06 2020
    
  • PARI
    list(lim)=my(v=List(),p=29); forprime(q=31,lim, if(q-p==2 && isprime(q^3-2) && isprime(q^5-2), listput(v,q)); p=q); Vec(v) \\ Charles R Greathouse IV, Apr 06 2020
  • Python
    import sympy
    n=2
    while n>1:
        n1=n-2
        n2=((n**3)-2)
        n3=((n**5)-2)
        ##Check if n1, n2 and n3 are also primes.
        if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True:
            print(n, " , " , n1, " , ", n2, " , ", n3)
        n=sympy.ntheory.nextprime(n)