A242517 List of primes p for which p^n - 2 is prime for n = 1, 3, and 5.
31, 619, 2791, 4801, 15331, 33829, 40129, 63421, 69151, 98731, 127291, 142789, 143569, 149971, 151849, 176599, 184969, 201829, 210601, 225289, 231841, 243589, 250951, 271279, 273271, 277549, 280591, 392269, 405439, 441799, 472711, 510709, 530599, 568441, 578689
Offset: 1
Examples
31 is in the sequence because p = 31 (prime), p - 2 = 29 (prime), p^3 - 2 = 29789 (prime), and p^5 - 2 = 28629149 (prime).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..250 from Abhiram R Devesh)
Crossrefs
Programs
-
Mathematica
Select[Range[600000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 2, PrimeQ] &] (* Amiram Eldar, Apr 06 2020 *)
-
PARI
isok(p) = isprime(p) && isprime(p-2) && isprime(p^3-2) && isprime(p^5-2); \\ Michel Marcus, Apr 06 2020
-
PARI
list(lim)=my(v=List(),p=29); forprime(q=31,lim, if(q-p==2 && isprime(q^3-2) && isprime(q^5-2), listput(v,q)); p=q); Vec(v) \\ Charles R Greathouse IV, Apr 06 2020
-
Python
import sympy n=2 while n>1: n1=n-2 n2=((n**3)-2) n3=((n**5)-2) ##Check if n1, n2 and n3 are also primes. if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True: print(n, " , " , n1, " , ", n2, " , ", n3) n=sympy.ntheory.nextprime(n)