A242523 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 3.
0, 0, 0, 0, 0, 0, 1, 11, 125, 1351, 15330, 184846, 2382084, 32795170, 481379278, 7513591430, 124363961357, 2176990766569, 40199252548280, 781143277669538, 15937382209774353, 340696424417421213, 7616192835573406931, 177723017354688250713, 4321711817908214684734
Offset: 1
Examples
The shortest cycle with this property has length n=7: {1,4,7,3,6,2,5}.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..27 (terms a(1)-a(15) from _Stanislav Sykora_)
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
Crossrefs
Programs
-
Mathematica
A242523[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[Abs[Differences[x]], # < 3 &]]; Table[A242523[n], {n, 1, 10}] (* OR, a less simple, but more efficient implementation. *) A242523[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[Abs[First[perm] - Last[perm]] >= 3, ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[Abs[Last[perm] - new] < 3, Continue[]]; A242523[n, Join[perm, {new}], Complement[Range[2, n], perm, {new}]]; ]; Return[ct]; ]; ]; Table[ct = 0; A242523[n, {1}, Range[2, n]]/2, {n, 1, 11}] (* Robert Price, Oct 24 2018 *)
Extensions
a(16)-a(25) from Hiroaki Yamanouchi, Aug 28 2014
Comments