cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242526 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at most 4.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 90, 214, 521, 1335, 3473, 9016, 23220, 59428, 152052, 389636, 999776, 2566517, 6586825, 16899574, 43352560, 111213798, 285319258, 732016006, 1878072638, 4818362046, 12361809384, 31714901077, 81366445061, 208750870961
Offset: 1

Views

Author

Stanislav Sykora, May 27 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.

Examples

			The 3 cycles of length n=4 are: {1,2,3,4},{1,2,4,3},{1,3,2,4}.
The first and the last of the 1335 such cycles of length n=10 are:
C_1={1,2,3,4,6,7,8,10,9,5}, C_1335={1,4,8,10,9,7,6,3,2,5}.
		

Crossrefs

Programs

  • Mathematica
    A242526[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[Abs[Differences[x]], # > 4 &]];
    Join[{1, 1}, Table[A242526[n], {n, 3, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242526[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[Abs[First[perm] - Last[perm]] <= 4, ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[Abs[Last[perm] - new] > 4, Continue[]];
          A242526[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1, 1}, Table[ct = 0; A242526[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 25 2018 *)

Formula

From Andrew Howroyd, Apr 08 2016: (Start)
Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-4) + 9*a(n-5) + 5*a(n-6) - a(n-7) - 7*a(n-8) - 10*a(n-9) + 2*a(n-10) + 2*a(n-11) + 2*a(n-12) + 4*a(n-13) - 2*a(n-17) - a(n-18) for n>20.
Empirical g.f.: x + (3 - 6*x - 2*x^2 - x^3 + 3*x^4 - 22*x^5 - 5*x^6 + x^7 + 8*x^8 + 14*x^9 - 6*x^10 + 2*x^11 - 6*x^12 - 6*x^13 - 3*x^15 + x^16 + 3*x^17) / (1 - 2*x - x^2 + x^4 - 9*x^5 - 5*x^6 + x^7 + 7*x^8 + 10*x^9 - 2*x^10 - 2*x^11 - 2*x^12 - 4*x^13 + 2*x^17 + x^18). (End)

Extensions

a(22)-a(30) from Andrew Howroyd, Apr 08 2016