A242526 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at most 4.
1, 1, 1, 3, 12, 36, 90, 214, 521, 1335, 3473, 9016, 23220, 59428, 152052, 389636, 999776, 2566517, 6586825, 16899574, 43352560, 111213798, 285319258, 732016006, 1878072638, 4818362046, 12361809384, 31714901077, 81366445061, 208750870961
Offset: 1
Keywords
Examples
The 3 cycles of length n=4 are: {1,2,3,4},{1,2,4,3},{1,3,2,4}. The first and the last of the 1335 such cycles of length n=10 are: C_1={1,2,3,4,6,7,8,10,9,5}, C_1335={1,4,8,10,9,7,6,3,2,5}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
Crossrefs
Programs
-
Mathematica
A242526[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[Abs[Differences[x]], # > 4 &]]; Join[{1, 1}, Table[A242526[n], {n, 3, 10}]] (* OR, a less simple, but more efficient implementation. *) A242526[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[Abs[First[perm] - Last[perm]] <= 4, ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[Abs[Last[perm] - new] > 4, Continue[]]; A242526[n, Join[perm, {new}], Complement[Range[2, n], perm, {new}]]; ]; Return[ct]; ]; ]; Join[{1, 1}, Table[ct = 0; A242526[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 25 2018 *)
Formula
From Andrew Howroyd, Apr 08 2016: (Start)
Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-4) + 9*a(n-5) + 5*a(n-6) - a(n-7) - 7*a(n-8) - 10*a(n-9) + 2*a(n-10) + 2*a(n-11) + 2*a(n-12) + 4*a(n-13) - 2*a(n-17) - a(n-18) for n>20.
Empirical g.f.: x + (3 - 6*x - 2*x^2 - x^3 + 3*x^4 - 22*x^5 - 5*x^6 + x^7 + 8*x^8 + 14*x^9 - 6*x^10 + 2*x^11 - 6*x^12 - 6*x^13 - 3*x^15 + x^16 + 3*x^17) / (1 - 2*x - x^2 + x^4 - 9*x^5 - 5*x^6 + x^7 + 7*x^8 + 10*x^9 - 2*x^10 - 2*x^11 - 2*x^12 - 4*x^13 + 2*x^17 + x^18). (End)
Extensions
a(22)-a(30) from Andrew Howroyd, Apr 08 2016
Comments