A242532 Number of cyclic arrangements of S={2,3,...,n+1} such that the difference of any two neighbors is greater than 1, and a divisor of their sum.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 20, 39, 0, 0, 0, 0, 319, 967, 0, 0, 1464, 6114, 16856, 44370, 0, 0, 0, 0, 2032951, 8840796, 12791922, 101519154, 0, 0
Offset: 1
Examples
The shortest such cycle is of length n=9: {2,4,8,10,5,7,9,3,6}. The next a(n)>0 occurs for n=14 and has 20 solutions. The first and the last of these are: C_1={2,4,8,10,5,7,14,12,15,13,11,9,3,6}, C_2={2,4,12,15,13,11,9,3,5,7,14,10,8,6}.
Links
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
Crossrefs
Programs
-
Mathematica
A242532[n_] := Count[Map[lpf, Map[j2f, Permutations[Range[3, n + 1]]]], 0]/2; j2f[x_] := Join[{2}, x, {2}]; dvf[x_] := Module[{i}, Table[Abs[x[[i]] - x[[i + 1]]] > 1 && Divisible[x[[i]] + x[[i + 1]], x[[i]] - x[[i + 1]]], {i, Length[x] - 1}]]; lpf[x_] := Length[Select[dvf[x], ! # &]]; Table[A242532[n], {n, 1, 10}] (* OR, a less simple, but more efficient implementation. *) A242532[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[Abs[First[perm] - Last[perm]] > 1 && Divisible[First[perm] + Last[perm], First[perm] - Last[perm]], ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[Abs[Last[perm] - new] <= 1 || ! Divisible[Last[perm] + new, Last[perm] - new], Continue[]]; A242532[n, Join[perm, {new}], Complement[Range[3, n + 1], perm, {new}]]; ]; Return[ct]; ]; ]; Table[ct = 0; A242532[n, {2}, Range[3, n + 1]]/2, {n, 1, 15}] (* Robert Price, Oct 25 2018 *)
Extensions
a(29)-a(37) from Fausto A. C. Cariboni, May 17 2017
Comments