A242533 Number of cyclic arrangements of S={1,2,...,2n} such that the difference of any two neighbors is coprime to their sum.
1, 1, 2, 36, 288, 3888, 200448, 4257792, 139511808, 11813990400, 532754620416
Offset: 1
Examples
For n=4, the only cycle is {1,2,3,4}. The two solutions for n=6 are: C_1={1,2,3,4,5,6} and C_2={1,4,3,2,5,6}.
Links
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
Crossrefs
Programs
-
Mathematica
A242533[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, 2 n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[cpf[x], ! # &]]; cpf[x_] := Module[{i}, Table[CoprimeQ[x[[i]] - x[[i + 1]], x[[i]] + x[[i + 1]]], {i, Length[x] - 1}]]; Join[{1}, Table[A242533[n], {n, 2, 5}]] (* OR, a less simple, but more efficient implementation. *) A242533[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[CoprimeQ[First[perm] + Last[perm], First[perm] - Last[perm]], ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[! CoprimeQ[Last[perm] + new, Last[perm] - new], Continue[]]; A242533[n, Join[perm, {new}], Complement[Range[2, 2 n], perm, {new}]]; ]; Return[ct]; ]; ]; Join[{1}, Table[ct = 0; A242533[n, {1}, Range[2, 2 n]]/2, {n, 2, 6}] ](* Robert Price, Oct 25 2018 *)
Extensions
a(10)-a(11) from Fausto A. C. Cariboni, May 31 2017, Jun 01 2017
Comments