A242534 Number of cyclic arrangements of S={1,2,...,n} such that the difference of any two neighbors is not coprime to their sum.
1, 0, 0, 0, 0, 0, 0, 0, 0, 72, 288, 3600, 17856, 174528, 2540160, 14768640, 101030400, 1458266112, 11316188160, 140951577600, 2659218508800, 30255151463424, 287496736542720, 5064092578713600, 76356431941939200, 987682437203558400, 19323690313219522560
Offset: 1
Examples
The first and the last of the 72 cycles for n=10 are: C_1={1,3,5,10,2,4,8,6,9,7} and C_72={1,7,5,10,8,4,2,6,3,9}. There are no solutions for cycle lengths from 2 to 9.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..27
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
Crossrefs
Programs
-
Mathematica
A242534[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[cpf[x], ! # &]]; cpf[x_] := Module[{i}, Table[! CoprimeQ[x[[i]] - x[[i + 1]], x[[i]] + x[[i + 1]]], {i, Length[x] - 1}]]; Join[{1}, Table[A242534[n], {n, 2, 10}]] (* OR, a less simple, but more efficient implementation. *) A242534[n_, perm_, remain_] := Module[{opt, lr, i, new}, If[remain == {}, If[! CoprimeQ[First[perm] + Last[perm], First[perm] - Last[perm]], ct++]; Return[ct], opt = remain; lr = Length[remain]; For[i = 1, i <= lr, i++, new = First[opt]; opt = Rest[opt]; If[CoprimeQ[Last[perm] + new, Last[perm] - new], Continue[]]; A242534[n, Join[perm, {new}], Complement[Range[2, n], perm, {new}]]; ]; Return[ct]; ]; ]; Join[{1}, Table[ct = 0; A242534[n, {1}, Range[2, n]]/2, {n, 2, 12}] ](* Robert Price, Oct 25 2018 *)
Extensions
a(19)-a(27) from Hiroaki Yamanouchi, Aug 30 2014
Comments