A244950 Least number k > n such that k^128 + n^128 is prime.
120, 113, 106, 259, 304, 85, 212, 135, 158, 47, 62, 985, 84, 47, 518, 485, 178, 169, 106, 27, 88, 139, 632, 47, 44, 643, 194, 209, 606, 1529, 32, 113, 1094, 139, 754, 647, 38, 45, 262, 69, 94, 631, 90, 527, 326, 195, 54, 277, 232, 187, 554, 189, 78, 799, 216, 131, 1132, 173
Offset: 1
Keywords
Examples
The n-value for which n^128 + 1 is prime (sequence A056994) is n = 120 (where n > 1 by definition). Thus a(1) = 120.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lnk[n_]:=Module[{k=n+1,n128=n^128},While[!PrimeQ[n128+k^128],k++];k]; Array[lnk,60] (* Harvey P. Dale, Apr 22 2018 *)
-
PARI
a(n)=for(k=n+1,10^4,if(isprime(k^128+n^128),return(k))) n=1;while(n<100,print1(a(n),", ");n++)
-
Python
import sympy from sympy import isprime def a(n): for k in range(n+1,10**4): if isprime(k**128+n**128): return k for n in range(1, 100): print(a(n), end=', ')
Comments