A242585 Number of divisors of the n-th positive number that is both triangular and square.
1, 9, 9, 45, 9, 405, 15, 189, 81, 729, 27, 6075, 27, 1215, 2025, 729, 81, 45927, 27, 32805, 2025, 6561, 81, 229635, 243, 2187, 2187, 18225, 9, 7381125, 243, 24057, 2187, 19683, 3645, 6200145, 729, 19683, 19683, 1240029, 81, 22143375, 243, 295245, 492075, 19683
Offset: 1
Keywords
Examples
a(2) = 9 because A001110(2) = 36 = 2^2 * 3^2 has (2+1)*(2+1) = 9 divisors. a(4) = 45 because A001110(4) = 41616 = 2^4 * 3^2 * 17^2 has (4+1)*(2+1)*(2+1) divisors. a(6) = 405 because A001110(6) = 48024900 = 2^2 * 3^4 * 5^2 * 7^2 * 11^2 has (2+1)*(4+1)*(2+1)*(2+1)*(2+1) = 405 divisors.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..300
- Jon E. Schoenfield, Table of values of n <= 300 such that n-th square triangular number has exactly k divisors
Programs
-
Magma
a:=0; b:=1; NumberOfDivisors(b); for n in [2..46 by 2] do a:=34*b-a+2; NumberOfDivisors(a); b:=34*a-b+2; NumberOfDivisors(b); end for;
Formula
Conjecture: a(n) == 0 mod 9 for n different from 1 and 7 [tested up to n = 300]. - Ivan N. Ianakiev, May 29 2014
Comments