A242599 Decimal expansion of dilog(phi-1) = polylog(2, 2-phi) with phi = (1 + sqrt(5))/2.
4, 2, 6, 4, 0, 8, 8, 0, 6, 1, 6, 2, 0, 9, 6, 1, 8, 2, 0, 9, 2, 0, 3, 6, 9, 9, 5, 4, 2, 6, 8, 7, 7, 3, 1, 5, 6, 7, 1, 1, 7, 3, 6, 1, 0, 4, 3, 3, 4, 2, 0, 5, 0, 4, 2, 7, 8, 9, 2, 2, 0, 6, 3, 0, 5, 8, 2, 0, 7, 6, 4, 2, 5, 9, 4, 3, 1, 8, 5, 3, 6, 5, 4, 8, 3, 9, 7, 0, 1, 3, 1, 6, 1, 5, 1, 5, 0, 8, 7, 0, 6, 5, 8, 5, 8, 5, 5
Offset: 0
Examples
0.42640880616209618209...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Maple
phi := (1+sqrt(5))/2 ; dilog(phi-1) ; evalf(%) ; # R. J. Mathar, Jun 10 2024
-
Mathematica
RealDigits[PolyLog[2, 2 - GoldenRatio], 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)
-
PARI
polylog(2, 2 - (1+sqrt(5))/2) \\ Gheorghe Coserea, Sep 30 2018
-
PARI
sumpos(k=1, (1 - 2*sin(Pi/10))^k/k^2) \\ Gheorghe Coserea, Sep 30 2018
Formula
dilog(phi-1) = polylog(2, 2-phi) = Sum_{k>=1} (2-phi)^k/k^2 = Sum_{k>=1} (1 - 2*sin(Pi/10))^k/k^2.
Comments