A242605 Start of a triple of consecutive squarefree numbers which are all semiprimes.
33, 55, 85, 91, 93, 115, 118, 119, 141, 142, 143, 158, 201, 202, 203, 205, 213, 214, 215, 217, 218, 295, 298, 299, 301, 302, 323, 326, 391, 393, 411, 413, 445, 451, 511, 514, 535, 542, 551, 622, 633, 685, 694, 695, 697, 745, 763, 778, 791, 799, 815, 842, 843, 865, 898, 921, 922
Offset: 1
Keywords
Examples
33 is in the sequence because 33, 34, 35 are all squarefree semiprimes. 55 is in the sequence because 55, 57, 58 (we ignore 56 because it's not squarefree) are all squarefree semiprimes.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Daniel C. Mayer, Define an "m-triple" to consist of three consecutive squarefree positive integers, each with exactly m prime divisors, Number Theory group on LinkedIn.com
Programs
-
Mathematica
Transpose[Select[Partition[Select[Range[1000],SquareFreeQ],3,1], Union[ PrimeOmega[ #]] =={2}&]][[1]] (* Harvey P. Dale, Feb 07 2016 *)
-
PARI
is_A242605(n,c=2)==issquarefree(n)&&omega(n)==2&&(!c||until(issquarefree(n++),)||is_A242605(n,c-1))
-
PARI
(back(n,c=1)=until(issquarefree(n--)&&c--,);n); for(n=1,999,issquarefree(n)||next;dk==4&&dk==dm&&numdiv(n)==dm&&print1(back(n)",");dk=dm;dm=numdiv(n))
Comments