A242606 Start of a triple of consecutive squarefree numbers each of which has exactly 3 distinct prime factors.
1309, 1442, 1885, 2013, 2091, 2665, 2694, 2714, 3243, 3422, 3655, 3729, 3854, 3855, 4430, 4431, 4503, 4921, 5034, 5035, 5133, 5282, 5678, 5795, 5882, 5883, 5943, 5954, 6054, 6061, 6094, 6213, 6302, 6303, 6305, 6306, 6477, 6851, 6853, 6873, 6985, 7202, 7257, 7334, 7383, 7682, 7730, 7802, 7842, 7922, 7953, 8238, 8239
Offset: 1
Keywords
Examples
The two squarefree numbers following a(1)=1309=7*11*17 are 1310=2*5*131 and 1311=3*19*23, all three have 3 prime divisors. The same is true for a(2)=1442, 1443 and the next squarefree number which is 1446. Further examples are provided by the first "sphenic triples" (1309, 1310, 1311), (1885, 1886, 1887) and (2013, 2014, 2015).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
- Daniel C. Mayer, Define an "m-triple" to consist of three consecutive squarefree positive integers, each with exactly m prime divisors, Number Theory group on LinkedIn.com
Crossrefs
Programs
-
Mathematica
Transpose[Select[Partition[Select[Range[10000],SquareFreeQ],3,1], Union[ PrimeNu[ #]] == {3}&]][[1]] (* Harvey P. Dale, Apr 29 2016 *)
-
PARI
(back(n)=for(i=1,2,until(issquarefree(n--),));n);for(n=1,9999,issquarefree(n)||next;ndk==ndm&&omega(n)==ndm&&ndk==3&&print1(back(n)",");ndk=ndm;ndm=omega(n))
Extensions
Minor edit by Hans Havermann, Aug 19 2014
Comments