A242607 Start of a triple of consecutive squarefree numbers each of which has exactly 4 distinct prime factors.
27962, 37145, 39234, 42182, 50138, 51986, 58562, 62643, 64074, 83082, 84774, 89089, 95642, 120783, 123486, 133903, 134826, 146165, 149606, 153543, 159182, 166495, 170751, 176754, 177122, 178086, 178087, 179330, 180782, 203433, 207974, 211562, 212583, 214489, 219063, 219894, 219963, 225069, 228135
Offset: 1
Keywords
Examples
The two squarefree numbers following a(1)=27962, 27965 and 27966, also have 4 prime divisors just as a(1).
Links
- Daniel C. Mayer, Define an "m-triple" to consist of three consecutive squarefree positive integers, each with exactly m prime divisors, Number Theory group on LinkedIn.com
Crossrefs
Programs
-
Mathematica
Transpose[Select[Partition[Select[Range[230000],SquareFreeQ],3,1], PrimeNu[ #] =={4,4,4}&]][[1]] (* Harvey P. Dale, Jul 06 2014 *)
-
PARI
(back(n)=for(i=1,2,until(issquarefree(n--),));n);for(n=1,9999,issquarefree(n)||next;ndk==ndm&&omega(n)==ndm&&ndk==4&&print1(back(n)",");ndk=ndm;ndm=omega(n))
Extensions
Minor edit by Hans Havermann, Aug 19 2014