A242618 Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows.
1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 4, 2, 1, 1, 2, 3, 3, 2, 1, 8, 3, 3, 2, 4, 6, 5, 5, 4, 13, 8, 4, 1, 5, 5, 11, 13, 7, 1, 11, 20, 14, 9, 2, 1, 6, 13, 17, 26, 11, 3, 1, 22, 31, 27, 15, 5, 2, 12, 18, 34, 44, 18, 7, 4, 40, 47, 51, 23, 11, 5, 16, 36, 56, 72, 34, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: : n\k : -3 -2 -1 0 1 2 3 ... +-----+--------------------------- : 0 : 1; : 1 : 1; : 2 : 1, 0, 1; : 3 : 1, 2; : 4 : 2, 1, 1, 1; : 5 : 4, 2, 1; : 6 : 1, 2, 3, 3, 2; : 7 : 1, 8, 3, 3; : 8 : 2, 4, 6, 5, 5; : 9 : 4, 13, 8, 4, 1; : 10 : 5, 5, 11, 13, 7, 1; : 11 : 11, 20, 14, 9, 2; : 12 : 1, 6, 13, 17, 26, 11, 3; : 13 : 1, 22, 31, 27, 15, 5; : 14 : 2, 12, 18, 34, 44, 18, 7;
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(b(n, i-1)+add(b(n-i*j, i-1)*x^(2*irem(i, 2)-1), j=1..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)): seq(T(n), n=0..20);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[b[n, i - 1] + Sum[b[n - i*j, i - 1]*x^(2*Mod[i, 2] - 1), {j, 1, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 12 2016 after Alois P. Heinz *)
Comments