cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242618 Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 4, 2, 1, 1, 2, 3, 3, 2, 1, 8, 3, 3, 2, 4, 6, 5, 5, 4, 13, 8, 4, 1, 5, 5, 11, 13, 7, 1, 11, 20, 14, 9, 2, 1, 6, 13, 17, 26, 11, 3, 1, 22, 31, 27, 15, 5, 2, 12, 18, 34, 44, 18, 7, 4, 40, 47, 51, 23, 11, 5, 16, 36, 56, 72, 34, 11, 1
Offset: 0

Views

Author

Alois P. Heinz, May 19 2014

Keywords

Comments

T(n,0) = A241638(n).
Sum_{k<0} T(n,k) = A241640(n).
Sum_{k<=0} T(n,k) = A241639(n).
Sum_{k>=0} T(n,k) = A241637(n).
Sum_{k>0} T(n,k) = A241636(n).
T(n^2,n) = T(n^2+n,-n) = 1.
T(n^2+n,n) = Sum_{k} T(n,k) = A000041(n).
T(n^2+3*n,-n) = A000712(n).

Examples

			Triangle T(n,k) begins:
: n\k : -3  -2  -1   0   1   2   3 ...
+-----+---------------------------
:  0  :              1;
:  1  :                  1;
:  2  :          1,  0,  1;
:  3  :              1,  2;
:  4  :          2,  1,  1,  1;
:  5  :              4,  2,  1;
:  6  :      1,  2,  3,  3,  2;
:  7  :          1,  8,  3,  3;
:  8  :      2,  4,  6,  5,  5;
:  9  :          4, 13,  8,  4,  1;
: 10  :      5,  5, 11, 13,  7,  1;
: 11  :         11, 20, 14,  9,  2;
: 12  :  1,  6, 13, 17, 26, 11,  3;
: 13  :      1, 22, 31, 27, 15,  5;
: 14  :  2, 12, 18, 34, 44, 18,  7;
		

Crossrefs

Row sums give A000041.
Cf. A240009 (parts counted with multiplicity), A240021 (distinct parts), A242626 (compositions counted without multiplicity).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1)+add(b(n-i*j, i-1)*x^(2*irem(i, 2)-1), j=1..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[b[n, i - 1] + Sum[b[n - i*j, i - 1]*x^(2*Mod[i, 2] - 1), {j, 1, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 12 2016 after Alois P. Heinz *)