A242628 Irregular table enumerating partitions; n-th row has partitions in previous row with each part incremented, followed by partitions in previous row with an additional part of size 1.
1, 2, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 5, 2
Offset: 1
Examples
The table starts: 1; 2; 1,1; 3; 2,2; 2,1; 1,1,1; 4; 3,3; 3,2; 2,2,2; 3,1 2,2,1 2,1,1 1,1,1,1; ...
Links
- Alois P. Heinz, Rows n = 1..12, flattened
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
Cf. A241596 (another version of this list of partitions), A125106, A240837, A112531, A241597 (compositions).
For other schemes to list integer partitions, please see for example A227739, A112798, A241918, A114994.
First element in each row is A008687.
Last element in each row is A065120.
Heinz numbers of rows are A253565.
Another version is A358134.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=1, [[1]], [map(x-> map(y-> y+1, x), b(n-1))[], map(x-> [x[], 1], b(n-1))[]]) end: T:= n-> map(x-> x[], b(n))[]: seq(T(n), n=1..7); # Alois P. Heinz, Sep 25 2015
-
Mathematica
T[1] = {{1}}; T[n_] := T[n] = Join[T[n-1]+1, Append[#, 1]& /@ T[n-1]]; Array[T, 7] // Flatten (* Jean-François Alcover, Jan 25 2021 *)
-
PARI
apart(n) = local(r=[1]); while(n>1,if(n%2==0,for(k=1,#r,r[k]++),r=concat(r,[1]));n\=2);r \\ Generates n-th partition.
Comments