A242633 Number of n-length words w over a 10-ary alphabet {a_1,...,a_10} such that w contains never more than j consecutive letters a_j (for 1<=j<=10).
1, 10, 99, 980, 9700, 96011, 950319, 9406280, 93103581, 921541438, 9121438862, 90284216730, 893635304019, 8845223290551, 87550228496839, 866574224082841, 8577372083864876, 84899030943287514, 840332608243515705, 8317631952113371291, 82328117000511661919
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7, 21, 60, 128, 253, 444, 740, 1145, 1700, 2398, 3266, 4267, 5412, 6627, 7896, 9123, 10275, 11246, 12016, 12491, 12681, 12534, 12099, 11364, 10420, 9287, 8069, 6801, 5578, 4420, 3400, 2512, 1792, 1217, 793, 482, 278, 144, 69, 26, 9).
Crossrefs
Column k=10 of A242464.
Programs
-
Maple
b:= proc(n, k, c, t) option remember; `if`(n=0, 1, add(`if`(c=t and j=c, 0, b(n-1, k, j, 1+`if`(j=c, t, 0))), j=1..k)) end: a:= n-> b(n, 10, 0$2): seq(a(n), n=0..30);
Formula
G.f.: -(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) *(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1) *(x^2+x+1) *(x^6+x^3+1) *(x^2+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2-x+1) / (9*x^41 +26*x^40 +69*x^39 +144*x^38 +278*x^37 +482*x^36 +793*x^35 +1217*x^34 +1792*x^33 +2512*x^32 +3400*x^31 +4420*x^30 +5578*x^29 +6801*x^28 +8069*x^27 +9287*x^26 +10420*x^25 +11364*x^24 +12099*x^23 +12534*x^22 +12681*x^21 +12491*x^20 +12016*x^19 +11246*x^18 +10275*x^17 +9123*x^16 +7896*x^15 +6627*x^14 +5412*x^13 +4267*x^12 +3266*x^11 +2398*x^10 +1700*x^9 +1145*x^8 +740*x^7 +444*x^6 +253*x^5 +128*x^4 +60*x^3 +21*x^2 +7*x-1).