A242642 Triangle read by rows: T(s,n) (n>=1, 1 <= s <= n) = number of s-line partitions of n.
1, 2, 3, 3, 5, 6, 5, 10, 12, 13, 7, 16, 21, 23, 24, 11, 29, 40, 45, 47, 48, 15, 45, 67, 78, 83, 85, 86, 22, 75, 117, 141, 152, 157, 159, 160, 30, 115, 193, 239, 263, 274, 279, 281, 282, 42, 181, 319, 409, 457, 481, 492, 497, 499, 500, 56, 271, 510, 674, 768, 816, 840, 851, 856, 858, 859
Offset: 1
Examples
Triangle begins: [1] [2, 3] [3, 5, 6] [5, 10, 12, 13] [7, 16, 21, 23, 24] [11, 29, 40, 45, 47, 48] [15, 45, 67, 78, 83, 85, 86] [22, 75, 117, 141, 152, 157, 159, 160] ... The square array (A242641 with n=0 column omitted) begins: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ... 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, ... 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, ... 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, ... 1, 3, 6, 13, 24, 47, 83, 152, 263, 457, 768, 1292, ... 1, 3, 6, 13, 24, 48, 85, 157, 274, 481, 816, 1388, ... 1, 3, 6, 13, 24, 48, 86, 159, 279, 492, 840, 1436, ... ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II.
Crossrefs
Upper triangle of array in A242641 (with the n=0 column omitted).
Programs
-
Maple
T:= proc(s, n) option remember; `if`(n=0, 1, add(add(min(d, s) *d, d=numtheory[divisors](j))*T(s, n-j), j=1..n)/n) end: seq(seq(T(s, n), s=1..n), n=1..14); # Alois P. Heinz, Oct 02 2018
-
Mathematica
T[s_, n_] := T[s, n] = If[n==0, 1, Sum[Sum[Min[d, s]*d, {d, Divisors[j]}]* T[s, n - j], {j, 1, n}]/n]; Table[Table[T[s, n], {s, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)