A242669 a(n) = n*floor(n/3).
0, 0, 0, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 108, 114, 120, 147, 154, 161, 192, 200, 208, 243, 252, 261, 300, 310, 320, 363, 374, 385, 432, 444, 456, 507, 520, 533, 588, 602, 616, 675, 690, 705, 768, 784, 800, 867, 884, 901, 972, 990
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Crossrefs
Programs
-
Magma
[n*Floor(n/3): n in [0..60]];
-
Mathematica
Table[n Floor[n/3], {n, 0, 60}]
-
PARI
a(n)=n\3*n \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[n*floor(n/3) for n in (0..60)];
Formula
G.f.: x^3*(3 + x + x^2 + x^3)/((1 - x)^3*(1 + x + x^2)^2).
Sum_{n>=3} (-1)^(n+1)/a(n) = 9/4 + Pi^2/36 - Pi/(2*sqrt(3)) - 2*log(2). - Amiram Eldar, Mar 30 2023
Comments