cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A242728 Sequence a(n) with all (x,y)=(a(2m),a(2m+-1)) satisfying y|x^2+1 and x|y^2+y+1.

Original entry on oeis.org

1, 2, 7, 25, 93, 346, 1291, 4817, 17977, 67090, 250383, 934441, 3487381, 13015082, 48572947, 181276705, 676533873, 2524858786, 9422901271, 35166746297, 131244083917, 489809589370, 1827994273563, 6822167504881, 25460675745961, 95020535478962
Offset: 0

Views

Author

Oboifeng Dira, May 21 2014

Keywords

Comments

a(n) with a(1)=2, a(2)=7 is that two-way sequence such that (a(n),a(n+1)) and (a(n),a(n-1)) for n even together with the corresponding pairs of A242725 give all solutions of the two congruences x^2+1 mod y = 0 and y^2+y+1 mod x = 0. The negative part b(n) = a(-n) is given in sequence A242725.

Examples

			Considering the pair a(1)=2 and a(2)=7, 2 divides 7^2+1 and 7 divides 2^2+2+1.
		

References

  • T. Bier, Classifications of solutions of certain positive biquadratic division system, submitted May 12 2014.
  • T. Bier and O. Dira, Construction of integer sequences, submitted May 12 2014.

Crossrefs

A101368 gives a similar problem with x^2+x+1 mod y = 0 and y^2+y+1 mod x = 0.

Programs

  • Maple
    x0:=1: x1:=2: L:=[x0,x1]: for k from 1 to 30 do:if k mod 2 = 1 then z:=4*x1-x0: fi: if k mod 2 = 0 then z:=4*x1-x0-1: fi: L:=[op(L),z]: x0:=x1: x1:=z: od: print(L);
  • Mathematica
    LinearRecurrence[{4,0,-4,1},{1,2,7,25},30] (* Harvey P. Dale, Sep 02 2025 *)
  • PARI
    Vec(-x*(x^3-x^2-2*x+1)/((x-1)*(x+1)*(x^2-4*x+1)) + O(x^100)) \\ Colin Barker, May 21 2014

Formula

a(n+1) = 4*a(n) - a(n-1) - p_n (n>0), where p_n=0 if n is odd and p_n = 1 if n is even.
a(n) = 4*a(n-1) - 4*a(n-3) + a(n-4). - Colin Barker, May 21 2014
G.f.: -(x^3-x^2-2*x+1) / ((x-1)*(x+1)*(x^2-4*x+1)). - Colin Barker, May 21 2014
a(n) = (1/12) * (2*A077136(n) + (-1)^n + 3). - Ralf Stephan, May 24 2014
Showing 1-1 of 1 results.