A242758 Smallest even k such that lpf(k-1) > lpf(k-3) >= prime(n), where lpf=least prime factor (A020639).
6, 8, 14, 14, 20, 20, 32, 32, 32, 44, 44, 44, 62, 62, 62, 62, 74, 74, 74, 104, 104, 104, 104, 104, 104, 110, 110, 140, 140, 140, 140, 140, 152, 152, 182, 182, 182, 182, 182, 182, 194, 194, 200, 200, 230, 230, 230, 230, 242, 242, 242, 272, 272, 272, 272, 272
Offset: 2
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 2..10001
- V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
Programs
-
Mathematica
lpf[k_] := FactorInteger[k][[1, 1]]; a[n_] := a[n] = For[k = If[n == 2, 2, a[n-1]], True, k = k+2, If[lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Nov 03 2018 *)
-
PARI
lpf(k) = factorint(k)[1,1]; vector(100, n, k=6; while(lpf(k-1)<=lpf(k-3) || lpf(k-3)
Colin Barker, Jun 01 2014
Comments