A242780 Decimal expansion of the maximum probability that the convex hull of four points, chosen at random inside a convex planar region, is a quadrilateral (Sylvester's four-point problem).
7, 0, 4, 4, 7, 9, 8, 8, 1, 0, 4, 3, 1, 8, 1, 4, 9, 9, 9, 5, 5, 3, 5, 1, 5, 6, 5, 6, 3, 8, 2, 9, 4, 3, 8, 6, 5, 2, 8, 9, 5, 3, 5, 7, 3, 8, 7, 2, 6, 1, 4, 2, 3, 2, 5, 3, 3, 6, 4, 0, 3, 2, 3, 6, 4, 1, 9, 9, 5, 0, 6, 3, 8, 6, 0, 1, 4, 6, 6, 2, 9, 8, 5, 8, 9, 7, 2, 9, 5, 1, 0, 5, 0, 2, 6, 9, 6, 4, 0, 2, 9, 3, 6
Offset: 0
Examples
0.70447988104318149995535...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.18, p. 533.
Links
- Eric Weisstein's MathWorld, Sylvester's Four-Point Problem.
Programs
-
Mathematica
RealDigits[1 - 35/(12*Pi^2), 10, 103] // First
-
PARI
1 - 35/(12*Pi^2) \\ Stefano Spezia, Dec 26 2024
Formula
Equals 1 - 35/(12*Pi^2).
Comments