cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242783 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 21, 3, 70, 50, 450, 270, 4326, 602, 99, 12, 1, 34944, 5376, 209863, 139714, 13303, 1573632, 1366016, 530432, 158720, 21824925, 15302031, 2715243, 74601, 302273664, 161855232, 14872704, 2854894485, 2600075865, 712988175, 59062275
Offset: 0

Views

Author

Alois P. Heinz, May 22 2014

Keywords

Comments

Sum_{k>0} k*T(n,k) = A249249(n).

Examples

			T(7,3) = 12 because 12 permutations of {1,2,3,4,5,6,7} have exactly 3 (possibly overlapping) occurrences of the consecutive step pattern up, up, up given by the binary expansion of 7 = 111_2: (1,2,3,4,5,7,6), (1,2,3,4,6,7,5), (1,2,3,5,6,7,4), (1,2,4,5,6,7,3), (1,3,4,5,6,7,2), (2,1,3,4,5,6,7), (2,3,4,5,6,7,1), (3,1,2,4,5,6,7), (4,1,2,3,5,6,7), (5,1,2,3,4,6,7), (6,1,2,3,4,5,7), (7,1,2,3,4,5,6).
Triangle T(n,k) begins:
: n\k :       0        1       2       3  4  ...
+-----+------------------------------------
:  0  :       1;
:  1  :       1;                             [row  1 of A008292]
:  2  :       2;                             [row  2 of A008303]
:  3  :       5,       1;                    [row  3 of A162975]
:  4  :      21,       3;                    [row  4 of A242819]
:  5  :      70,      50;                    [row  5 of A227884]
:  6  :     450,     270;                    [row  6 of A242819]
:  7  :    4326,     602,     99,     12, 1; [row  7 of A220183]
:  8  :   34944,    5376;                    [row  8 of A242820]
:  9  :  209863,  139714,  13303;            [row  9 of A230695]
: 10  : 1573632, 1366016, 530432, 158720;    [row 10 of A230797]
		

Crossrefs

Programs

  • Maple
    T:= proc(n) option remember; local b, k, r, h;
          k:= iquo(n,2,'r'); h:= 2^ilog2(n);
          b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, irem(2*t,   h))*`if`(r=0 and t=k, x, 1), j=1..u)+
          add(b(u+j-1, o-j, irem(2*t+1, h))*`if`(r=1 and t=k, x, 1), j=1..o)))
          end: forget(b);
          (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 0))
        end:
    seq(T(n), n=0..15);
  • Mathematica
    T[n_] := T[n] = Module[{b, k, r, h}, {k, r} = QuotientRemainder[n, 2]; h = 2^Floor[Log[2, n]]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[ Sum[b[u - j, o + j - 1, Mod[2*t, h]]*If[r == 0 && t == k, x, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, Mod[2*t + 1, h]]*If[r == 1 && t == k, x, 1], {j, 1, o}]]]; Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)