A242783 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down; triangle T(n,k), n>=0, read by rows.
1, 1, 2, 5, 1, 21, 3, 70, 50, 450, 270, 4326, 602, 99, 12, 1, 34944, 5376, 209863, 139714, 13303, 1573632, 1366016, 530432, 158720, 21824925, 15302031, 2715243, 74601, 302273664, 161855232, 14872704, 2854894485, 2600075865, 712988175, 59062275
Offset: 0
Examples
T(7,3) = 12 because 12 permutations of {1,2,3,4,5,6,7} have exactly 3 (possibly overlapping) occurrences of the consecutive step pattern up, up, up given by the binary expansion of 7 = 111_2: (1,2,3,4,5,7,6), (1,2,3,4,6,7,5), (1,2,3,5,6,7,4), (1,2,4,5,6,7,3), (1,3,4,5,6,7,2), (2,1,3,4,5,6,7), (2,3,4,5,6,7,1), (3,1,2,4,5,6,7), (4,1,2,3,5,6,7), (5,1,2,3,4,6,7), (6,1,2,3,4,5,7), (7,1,2,3,4,5,6). Triangle T(n,k) begins: : n\k : 0 1 2 3 4 ... +-----+------------------------------------ : 0 : 1; : 1 : 1; [row 1 of A008292] : 2 : 2; [row 2 of A008303] : 3 : 5, 1; [row 3 of A162975] : 4 : 21, 3; [row 4 of A242819] : 5 : 70, 50; [row 5 of A227884] : 6 : 450, 270; [row 6 of A242819] : 7 : 4326, 602, 99, 12, 1; [row 7 of A220183] : 8 : 34944, 5376; [row 8 of A242820] : 9 : 209863, 139714, 13303; [row 9 of A230695] : 10 : 1573632, 1366016, 530432, 158720; [row 10 of A230797]
Links
- Alois P. Heinz, Rows n = 0..130, flattened
Crossrefs
Programs
-
Maple
T:= proc(n) option remember; local b, k, r, h; k:= iquo(n,2,'r'); h:= 2^ilog2(n); b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( add(b(u-j, o+j-1, irem(2*t, h))*`if`(r=0 and t=k, x, 1), j=1..u)+ add(b(u+j-1, o-j, irem(2*t+1, h))*`if`(r=1 and t=k, x, 1), j=1..o))) end: forget(b); (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 0)) end: seq(T(n), n=0..15);
-
Mathematica
T[n_] := T[n] = Module[{b, k, r, h}, {k, r} = QuotientRemainder[n, 2]; h = 2^Floor[Log[2, n]]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[ Sum[b[u - j, o + j - 1, Mod[2*t, h]]*If[r == 0 && t == k, x, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, Mod[2*t + 1, h]]*If[r == 1 && t == k, x, 1], {j, 1, o}]]]; Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
Comments