A242862 Absolute discriminants of complex quadratic fields with 3-class rank 2.
3299, 3896, 4027, 5703, 6583, 8751, 9748, 10015, 11651, 12067, 12131, 15544, 16627, 17131, 17399, 17723, 18555, 19187, 19427, 19651, 19679, 19919, 20276, 20568, 21224, 21668, 22395, 22443, 22711, 23428, 23683
Offset: 1
Examples
For n=1,4, resp. n=2,3, the 3-class group is of type (3,9), resp. (3,3).
Links
- H. Koch and B. B. Venkov, Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Astérisque 24-25 (1975), 57-67.
- C. McLeman, p-tower groups over quadratic imaginary number fields, arXiv:1008.3003 [math.NT], 2010; Ann. Sci. Math. Québec 32 (2008), no. 2, 199-209.
- A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41. DOI:10.1515/crll.1934.171.19
Programs
-
Magma
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if (2 eq #pPrimaryInvariants(C,3)) then d,","; end if; end if; end for;
Comments