Daniel Constantin Mayer has authored 48 sequences. Here are the ten most recent ones:
A380103
Minimal conductors c of cyclic cubic number fields K with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=0,1,2,3,...
Original entry on oeis.org
657, 2439, 7657, 41839, 231469
Offset: 1
We have M abelian for c=657=9*73 (two fields in a doublet), cc(M)=1 for c=2439=9*271 (two fields in a doublet), cc(M)=2 for c=7657=13*19*31 (three fields in a quartet), cc(M)=3 for c=41839=7*43*139 (two fields in a quartet), cc(M)=4 for c=231469=7*43*769 (four fields in a quartet). If the conductor c has two prime divisors, then cc(M)=1. For cc(M) > 1, exactly three prime divisors of the conductor c are required.
Analog of
A379524 for real quadratic fields.
A380104
Minimal conductors c of complex dihedral normal closures K = L(zeta_3) of pure cubic number fields L = Q(d^1/3), d > 1 cubefree, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=0,1,2,3,...
Original entry on oeis.org
30, 90, 418, 1626
Offset: 1
We have M abelian for c=30=2*3*5 (a singlet), cc(M)=1 for c=90=2*3^2*5 (two fields in a quartet), cc(M)=2 for c=418=2*11*19, cc(M)=3 for c=1626=2*3*271.
Analog of
A379524 for real quadratic fields.
A380102
Minimal absolute discriminants |d| of imaginary quadratic number fields K = Q(sqrt(d)), d < 0, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned even coclass cc(M)=2,4,6,8,...
Original entry on oeis.org
3896, 27156, 423640, 99888340
Offset: 1
The coclass cannot be odd for imaginary quadratic fields. We have cc(M)=2 for d=-3896, cc(M)=4 for d=-27156, cc(M)=6 for d=-423640, cc(M)=8 for d=-99888340.
A379524
Minimal discriminants d of real quadratic number fields K = Q(sqrt(d)), d > 0, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=1,2,3,4,...
Original entry on oeis.org
32009, 214712, 710652, 8127208, 180527768
Offset: 1
We have cc(M)=1 for d=32009, cc(M)=2 for d=214712, cc(M)=3 for d=710652, cc(M)=4 for d=8127208, cc(M)=5 for d=180527768. The Magma script "SiftRealIPADs.m" produces a table "IpadFreqReal" of minimal discriminants for each IPAD from the file ipad_freq_real. This table admits the determination of the term a(n) of the sequence A379524. For instance: According to the FORMULA, the table contains three candidates for a(4) with cc(M)=4 and thus cc(M)+1=5=log_3(3^5)=log_3(#[9,27])=log_3(h_3(L_2)) with the second largest 3-class number h_3(L_2) in the IPAD. They are 8321505 and 8491713 and 8127208. Thus the minimal discriminant is a(4)=8127208.
- M. R. Bush, ipad_freq_real, file with two lists, disclist and ipadlist, containing all IPADs of real quadratic fields K with 3-class group of rank 2 and discriminant d < 10^9, Washington and Lee Univ. Lexington, Virginia, 2015.
- Daniel Constantin Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014; J. Théor. Nombres Bordeaux 25 (2013), 401-456.
- Daniel Constantin Mayer, Principalization algorithm via class group structure, arXiv:1403.3839 [math.NT], 2014; J. Théor. Nombres Bordeaux 26 (2014), 415-464.
- Daniel Constantin Mayer, The second p-class group of a number field, arXiv:1403.3899 [math.NT], 2014; Int. J. Number Theory 8 (2012), no. 2, 471-505.
- Daniel Constantin Mayer, M. R. Bush: data file ipad_freq_real
- Daniel Constantin Mayer, Program "SiftRealIPADs.m" which extracts minimal discriminants for assigned IPADs from the file ipad_freq_real and arranges them in the table "IpadFreqReal"
- Daniel Constantin Mayer, "IpadFreqReal": table of minimal discriminants for assigned IPADs
- Daniel Constantin Mayer, Magma program "RealCoClass.m" with endless loop
A363699
Radicands of pure cubic number fields of type BETA and subtype M0.
Original entry on oeis.org
2, 455, 833, 850, 1078, 1235, 1430, 1573, 3857, 4901, 6061, 6358, 6370, 8294, 8959, 9922, 11284, 12121, 12673, 12818, 14801, 17986, 18241, 20539, 21607, 22747, 23218, 26474, 27115, 29716, 30073, 31046, 32062, 32269, 33337, 36518, 37570, 38399, 38657, 38686, 39146, 40223, 41990, 42143
Offset: 1
Daniel Constantin Mayer discovered that two radicands of M0-fields, 1430 and 12673, both of Dedekind species II, D == 1,8 (mod 9), and three further radicands of M0-fields, 6370, 9922, 11284, all of Dedekind species IB, D == 2,4,5,7 (mod 9), are missing from the table by H. C. Williams, Math. Comp., Section 6, Table 2, p. 273.
- S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi, Principal factors and lattice minima in cubic fields, Kyushu J. Math. 76 (2022), No. 1, 101-118.
- Daniel Constantin Mayer, Table of pure cubic number fields with normalized radicands between 0 and 110000, Karl-Franzens-Universität, Graz, April 1989.
- Daniel Constantin Mayer, The algorithm of Voronoi for orders in simply real cubic number fields, Karl-Franzens-Universität, Graz, March 1989.
- Daniel Constantin Mayer, Differential principal factors and units in pure cubic number fields, Karl-Franzens-Universität, Graz, August 1988.
- G. F. Voronoi, Ob odnom obobshchenii algorithma nepreryvnykh drobei (On a generalization of the algorithm of continued fractions). Doctoral Dissertation, Warsaw, 1896 (in Russian).
- Daniel Constantin Mayer, Table of n, a(n) for n = 1..92
- S. Aouissi et al., 3-rank of ambiguous class groups of cubic Kummer extensions, Period. Math. Hungar., 81(2020), 250-274.
- Daniel Constantin Mayer, Detailed comments and examples
- Daniel Constantin Mayer, Magma program
- Daniel Constantin Mayer, Fast Voronoi Algorithm (Magma)
- H. C. Williams, Determination of principal factors in Q(D^1/2) and Q(D^1/3), Math. Comp. 38 (1982), No. 157, 261-274.
A363717
Prime radicands p == 1 (mod 9) of pure cubic number fields of type Gamma.
Original entry on oeis.org
541, 919, 1279, 1531, 2161, 2269, 3637, 6211, 6427, 7129, 7723, 7867, 7993, 8389, 8461, 9649, 9901, 10009, 11071, 13627, 15031, 15391, 15607, 15661, 15787, 16741, 17713, 17911, 17929
Offset: 1
The initial term 541 is the 16th term of the sequence of primes p == 1 (mod 9). The closely related conductors c = 3*2*541 = 3246 and c = 3*5*541 = 8115, resp. c = 9*541 = 4869, give rise to rare capitulation types d.23, (1320), resp. a.2, (1000), which cannot occur for type Alpha, according to Ismaili and El Mesaoudi.
- S. Aouissi, D. C. Mayer, M. C. Ismaili, M. Talbi, and A. Azizi, 3-rank of ambiguous class groups of cubic Kummer extensions, Period. Math. Hungar. (2020) Vol. 81, 250-274.
- Siham Aouissi and Daniel C. Mayer, Disproof of claims about pure cubic fields, arXiv:2501.01361 [math.NT], 2025. See pp. 10, 15.
- M. C. Ismaili and R. El Mesaoudi, Sur la capitulation des 3-classes d'idéaux de la clôture normale de certains corps cubiques purs, Ann. Sci. Math. Québec, 29(2005), no. 1, 49-72.
-
p:=1; while (p lt 10^5) do p:=NextPrime(p); if (1 eq p mod 9) then ZX:=PolynomialRing(Integers()); L:=NumberField(X^3-p); K:=NumberField(X^2+X+1); N:=Compositum(L,K); SetClassGroupBounds("GRH"); CL:=ClassGroup(L); VL:=Valuation(#CL,3); CN:=ClassGroup(N); VN:=Valuation(#CN,3); E:=VN-2*VL+1; if (1 eq E) then printf "%o, ",p; end if; end if; end while;
A359872
Absolute discriminants of imaginary quadratic number fields with elementary bicyclic 7-class group (7,7).
Original entry on oeis.org
63499, 118843, 124043, 149519, 159592, 170679, 183619, 185723, 220503, 226691, 227387, 227860, 236931, 240347, 240655, 247252, 260111, 268739, 272179, 275636, 294935, 299627, 301211, 308531, 318547, 346883, 361595, 366295, 373655, 465719, 489576, 491767, 501576, 506551, 511988, 518879, 528243, 546792, 553791
Offset: 1
On 06 January 2012, Daniel C. Mayer determined the abelian type invariants (ATI), and thus indirectly the coarse capitulation type, of the eight unramified cyclic septic extensions for all 70 discriminants in the range between -63499 and -751288. On page 133 of his 2012 Ph.D. thesis, Tobias Bembom independently recomputed the capitulation for the two discriminants -63499 and -159592. In the time between 09 and 16 August 2014, Daniel C. Mayer computed the fine capitulation type of all 94 discriminants in the range -63499 and -991720 without any hit of the identity capitulation. Since the fine capitulation requires much more CPU time than the ATI, Mayer conducted an extensive search for the identity capitulation, identified by eight ATI of the shape (7,7,7), in the range from 10^6 to 6578723, with an eventual successful hit of the identity capitulation for -5073691 (the 555th term of A359872) on 26 October 2019 (see A359296).
- Daniel C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2013), no. 2, 401-456. (Sec. 3.5.2, p. 448)
- Tobias Bembom, The capitulation problem in class field theory, Dissertation, Univ. Göttingen, 2012. (Sec. 6.3, p. 128)
- Daniel C. Mayer, Heptadic quantum class groups
- Daniel C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014. (Sec. 3.5.4, pp. 450-451)
-
for d := 2 to 10^6 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([7,7] eq pPrimaryInvariants(C,7)) then d, ", "; end if; end if; end for;
A359871
Absolute discriminants of imaginary quadratic number fields with elementary bicyclic 5-class group (5,5).
Original entry on oeis.org
11199, 12451, 17944, 30263, 33531, 37363, 38047, 39947, 42871, 53079, 54211, 58424, 61556, 62632, 63411, 64103, 65784, 66328, 67031, 67063, 67128, 69811, 72084, 74051, 75688, 83767, 84271, 85099, 85279, 87971, 89751, 90795, 90868, 92263, 98591, 99031, 99743
Offset: 1
On page 22 of their 1982 paper, Franz-Peter Heider and Bodo Schmithals gave the smallest prime discriminant -12451 and determined two of the six capitulation kernels in unramified cyclic quintic extensions. On 03 November 2011, Daniel C. Mayer determined the abelian type invariants, and thus indirectly the coarse capitulation type, of these six extensions for all 37 discriminants in the range between -11199 and -99743, with computational aid by Claus Fieker. In particular, -89751 was the minimal occurrence of the identity capitulation (see A359291). In his 2012 Ph.D. thesis, Tobias Bembom independently recomputed the capitulation in this range, without being able to detect the identity capitulation for -89751. It must be pointed out that in his table on pages 129 and 130, the minimal discriminant -11199=-3*3733 is missing, whereas the discriminant -81287 is superfluous and must be cancelled, since its 5-class group is non-elementary bicyclic of type (25,5).
- F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2013), no. 2, 401-456. (Sec. 3.5.2, p. 448)
- T. Bembom, The capitulation problem in class field theory, Dissertation, Univ. Göttingen, 2012. (Sec. 6.3, p. 128)
- D. C. Mayer, Pentadic quantum class groups
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014. (Sec. 3.5.2-3.5.3, pp. 448-450)
-
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([5,5] eq pPrimaryInvariants(C,5)) then d, ", "; end if; end if; end for;
A359296
Absolute discriminants of imaginary quadratic fields with elementary bicyclic 7-class group and capitulation type the identity permutation.
Original entry on oeis.org
4973316, 5073691
Offset: 1
The second, respectively first, imaginary quadratic field with 7-class group (7,7) and identity capitulation (12345678) has discriminant -5073691, respectively -4973316, and was discovered by Daniel C. Mayer on 26 October 2019, respectively 09 November 2019. It has ordinal number 555, respectively 545, in the sequence of all imaginary quadratic fields with 7-class group (7,7).
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2013), no. 2, 401-456. Sec. 3.5.4, p. 450.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
- O. Taussky-Todd, A remark concerning Hilbert's Theorem 94, J. reine angew. Math. 239/240 (1970), 435-438.
A359310
Cyclic cubic conductors associated with closed Andozhskii groups.
Original entry on oeis.org
59031, 209853, 247437, 263017, 271737, 329841, 377923, 407851, 412909, 415597, 416241, 416727, 462573, 474561, 487921, 493839, 547353, 586963, 612747, 613711, 615663, 622063, 648427, 651829, 689347, 690631, 753787, 796779, 811069, 818217, 869611, 914263, 915439, 922167, 936747, 977409, 997087
Offset: 1
Cyclic cubic number fields with conductors 59031, respectively 209853, respectively 247437, 263017, 271737, elementary tricyclic 3-class group (3,3,3), and harmonically balanced capitulation have been discovered by Daniel Constantin Mayer on 13 July 2022, respectively 15 July 2022, respectively 25 December 2022. Each of them belongs to a quartet of non-isomorphic fields sharing a common conductor, such that the other three fields have 3-class group (3,3) and capitulation type (1243), called G.16. The conductors bigger than 300000 were computed by Bill Allombert at the University of Bordeaux with PARI/GP.
- Bill Allombert, Plateforme Fédérative pour la Recherche en Informatique et Mathématique (PlaFRIM)
- Bill Allombert and Daniel Constantin Mayer, Cyclic cubic number fields with harmonically balanced capitulation, arXiv:2307.13898 [math.NT], 2023.
- Bill Allombert and Daniel Constantin Mayer, Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 21-46. See p. 23.
- I. V. Andozhskii and V. M. Tsvetkov, On a series of finite closed p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974), no. 2, 278-290.
- I. V. Andozhskii, On some classes of closed pro-p-groups, Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), no. 4, 707-738.
- Daniel Constantin Mayer, Theoretical and experimental approach to p-class field towers of cyclic cubic number fields, Four plenary lectures and exercises, Les Sixièmes Journées d'Algèbre, Théorie des Nombres et leurs Applications (JATNA), 25-26 November 2022, Oujda, Morocco, pp. 83-86.
Comments