A242870 Numbers n such that (n^n-2^2)/(n-2) is an integer.
1, 3, 4, 6, 8, 14, 20, 22, 38, 44, 56, 62, 86, 102, 110, 128, 158, 164, 182, 222, 254, 296, 302, 326, 344, 380, 422, 470, 488, 502, 542, 590, 622, 662, 686, 758, 782, 822, 884, 902, 974, 1028, 1094, 1102, 1136, 1262, 1316, 1334, 1406, 1460, 1502, 1622, 1766, 1808
Offset: 1
Keywords
Examples
(4^4-2^2)/(4-2) = 252/2 = 126 is an integer. Thus, 4 is a member of this sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A242871.
Programs
-
Maple
filter:= proc(n) (n&^n - 4) mod (n-2) = 0 end proc; select(filter, [1,$3..1000]); # Robert Israel, May 25 2014
-
Mathematica
Join[{1},Select[Range[3,2000],IntegerQ[(#^#-4)/(#-2)]&]] (* Harvey P. Dale, Apr 24 2016 *)
-
PARI
for(n=1,2500,if(n!=2,s=(n^n-2^2)/(n-2);if(floor(s)==s,print(n))))
Comments