A242900 Number of compositions of n into exactly two different parts with distinct multiplicities.
3, 10, 12, 38, 56, 79, 152, 251, 284, 594, 920, 1108, 2136, 3402, 4407, 8350, 12863, 17328, 33218, 52527, 70074, 133247, 214551, 294299, 547360, 883572, 1234509, 2284840, 3667144, 5219161, 9551081, 15386201, 22079741, 40061664, 64666975, 93985744, 168363731
Offset: 4
Keywords
Examples
a(4) = 3: [2,1,1], [1,2,1], [1,1,2]. a(5) = 10: [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [2,2,1], [2,1,2], [1,2,2], [3,1,1], [1,3,1], [1,1,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(add(add(`if`(d
m, binomial((n-p*m) /d+m, m), 0), d=divisors(n-p*m)), m=1..n/p), p=2..n-1): seq(a(n), n=4..60);
-
Mathematica
div[0] = {}; div[n_] := Divisors[n]; a[n_] := Sum[Sum[Sum[If[d
Formula
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, Aug 21 2014