cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242900 Number of compositions of n into exactly two different parts with distinct multiplicities.

Original entry on oeis.org

3, 10, 12, 38, 56, 79, 152, 251, 284, 594, 920, 1108, 2136, 3402, 4407, 8350, 12863, 17328, 33218, 52527, 70074, 133247, 214551, 294299, 547360, 883572, 1234509, 2284840, 3667144, 5219161, 9551081, 15386201, 22079741, 40061664, 64666975, 93985744, 168363731
Offset: 4

Views

Author

Alois P. Heinz, May 25 2014

Keywords

Examples

			a(4) = 3: [2,1,1], [1,2,1], [1,1,2].
a(5) = 10: [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [2,2,1], [2,1,2], [1,2,2], [3,1,1], [1,3,1], [1,1,3].
		

Crossrefs

Column k=2 of A242896.
Cf. A182473 (the same for partitions), A131661 (multiplicities may be equal).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(add(`if`(d

    m, binomial((n-p*m) /d+m, m), 0), d=divisors(n-p*m)), m=1..n/p), p=2..n-1): seq(a(n), n=4..60);

  • Mathematica
    div[0] = {}; div[n_] := Divisors[n]; a[n_] := Sum[Sum[Sum[If[d

Formula

a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, Aug 21 2014